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1 Some Arithmetic and Geometry of Real Numbers

Exercise 1.17.

(a) Explain with cases why, if a is a real number, then a ≤ |a|.

(b) Explain, if, for any real number a, sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0 and sgn(a) = 0 if
a = 0, then a = sgn(a)|a| and |a| = sgn(a)a.

Solution:

(a) Suppose a is a real number. Then either a ≥ 0 or a < 0 by Trichotomy of order.

• If a ≥ 0, then |a| = a ≥ a.
• If a < 0, then |a| = −a > 0 > a.

In any case, |a| ≥ a.

(b) Suppose a is a real number. Then either a > 0, a = 0 or a < 0 by Trichotomy of order.

• If a > 0, then |a| = a and sgn(a) = 1. Hence, a = 1 · a = sgn(a)|a|. Also, |a| = a = 1 · a =
sgn(a)a.

• If a = 0, then |a| = 0 and sgn(a) = 0. Hence, a = 0 · 0 = sgn(a)|a|. Also, |a| = 0 = 0 · 0 =
sgn(a)a.

• If a < 0, then |a| = −a and sgn(a) = −1. Hence, a = (−1) · (−a) = sgn(a)|a|. Also,
|a| = −a = (−1) · a = sgn(a)a. The claims a = (−1) · (−a) and −a = (−1) · a for any real
number a are not definitions, but can be explained using the distributive property.

In any case, a = sgn(a)|a| and |a| = sgn(a)a.
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2 Relations and Functions

Exercise 2.9. In Example ??, determine which are functions as relations in R2 and explain why.

Solution:

(a) < is the set {(a, b) ∈ R2 | a < b}. This is not a function. For example, both 0 < 1 and 0 < 2.
Importantly, 1 6= 2. That is, (0, 1) ∈< and (0, 2) ∈< (there are two outputs for the same input).
Another way to phrase this is < fails the vertical line test.

(b) = on R2 is the set {(a, b) ∈ R2 | a = b}. This is a function. For any a ∈ R, if a = b and a = c
for two real numbers b and c, then b = c by transitivity of equality.

(c) The horizontal axis is the set {(a, b) ∈ R2 | b = 0}. This is a function. For every a ∈ R, if
(a, b) and (a, c) are on the horizontal axis for some real numbers b and c, then b = 0 = c, by
definition.

(d) The vertical axis is the set {(a, b) ∈ R2 | a = 0}. This is not a function. For example, both
(0, 1) and (0, 2) are members of this set. So, there exists an input which has two outputs.
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Exercise 2.10.
For this exercise, let B = {a, b}, the set consisting of the characters a and b.

(a) If A1 = {1}, the set consisting of the number 1, describe all functions with domain A1 and
codomain B.

(b) If A2 = {1, 2}, describe all functions with domain A2 and codomain B.

(c) If A3 = {1, 2, 3}, describe all functions with domain A3 and codomain B.

(d) If n is a natural number (an integer > 0), try to deduce a formula for the number of functions
with domain consisting of n elements and codomain B. Can you explain your result?

Solution: Remember what it means to be a function. Each input is assigned exactly one
output.

(a) There are two functions.
A1 B

1 a
,

A1 B

1 b
.

(b) There are four functions.

A2 B

1 a

2 a

,

A2 B

1 a

2 b

,

A2 B

1 b

2 a

,

A2 B

1 b

2 b

.

(c) There are eight functions.

A3 B

1 a

2 a

3 a

,

A3 B

1 a

2 a

3 b

,

A3 B

1 a

2 b

3 a

,

A3 B

1 a

2 b

3 b

,

A3 B

1 b

2 a

3 a

,

A3 B

1 b

2 a

3 b

,

A3 B

1 b

2 b

3 a

,

A3 B

1 b

2 b

3 b

.

(d) Notice each time we double the amount of functions. This is because there are two elements
in the set B. If n is a natural number greater than 1, for every function f between An−1 and
B, there are exactly two functions between An and B whose restriction to An−1, as a subset
of An, is f . One of these functions sends n to a, the other sends n to b. So, the number of
functions with domain An and target B is 2n.
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Exercise 2.17.

(a) Express the real number line as a disjoint union of two intervals.

(b) Express the real number line as a disjoint union of three intervals.

(c) Express the relation ≤ as a union of two relations.

Solution:

(a) There are infinitely many intervals to choose from. We choose (−∞,∞) = (−∞, 0) ∪ [0,∞).
This equality (and the disjointness of the intervals on the right) is the statement of Trichotomy
of positivity. Any number is exactly either negative, zero, or positive.

(b) (−∞,∞) = (−∞, 0) ∪ [0, 1] ∪ (1,∞). Let’s demonstrate these two sets are equal. Certainly,
(−∞, 0) ∪ [0, 1] ∪ (1,∞) is a subset of (−∞,∞). If x ∈ (−∞,∞), then either x < 0, meaning
x ∈ (−∞, 0), x ≥ 0 and x ≤ 1, meaning x ∈ [0, 1], or x > 1, meaning x ∈ (1,∞). These follow
from repeated use of Trichotomy of order. Hence, x ∈ (−∞, 0) ∪ [0, 1] ∪ (1,∞). Since x is an
arbitrary real number, it follows R = (−∞, 0) ∪ [0, 1] ∪ (1,∞).

Moreover, the intervals (−∞, 0), [0, 1] and (1,∞) are mutually disjoint by Trichotomy of order.
If x < 0, then it’s not true that x ≥ 0. So, if x ∈ (0,∞), then x 6∈ [0, 1] ∪ (1,∞). Similarly, if
0 ≤ x ≤ 1, then it is not true that x < 0 or x > 1. So, if x ∈ [0, 1], then x 6∈ (−∞, 0) ∪ (1,∞).
Finally, if x > 1, then it is not true that x ≤ 1. Hence, if x ∈ (1,∞), then x 6∈ (−∞, 0) ∪ [0, 1].

(c) The relation ≤ is the relation < ∪ = . If a ≤ b, then either a < b or a = b by definition. Hence,
≤ is a subset of < ∪ = . If either a < b or a = b, then a ≤ b by definition. Hence, < ∪ = is a
subset of ≤ . Since these relations are subsets of each other, they are equal.
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Exercise 2.20. Determine when the union of two functions f∪g is itself a function. Such a function
is called a piecewise function. Hint: If the domain of f and the domain of g are disjoint, then
f ∪ g is a function.

Solution: Suppose f and g are functions. By definition, the relation f ∪ g is a function exactly
when, whenever (x, y) ∈ f ∪ g and (x, z) ∈ f ∪ g, y = z. Now by definition, (x, y) ∈ f ∪ g if either
(x, y) ∈ f or (x, y) ∈ g and (x, z) ∈ f ∪ g if either (x, z) ∈ f or (x, z) ∈ g. So, if (x, y) and (x, z) are
members of f or both members of g, then y = z because f and g are functions themselves. So, we
need only consider when (x, y) is a member of f and (x, z) is a member of g or vice versa. In this
case, x ∈ domain(f) ∩ domain(g), the intersection of the domains of f and g. In order to ensure
y = z, f must agree with g on the intersection of their domain.

Claim: f ∪ g is a function if and only if, whenever x ∈ domain(f) ∩ domain(g), f(x) = g(x).
Proof:

• Suppose f ∪ g is a function. Now fix x ∈ domain(f) ∩ domain(g). Then (x, f(x)) ∈ f and
(x, g(x)) ∈ g. Since f ∪ g is a function, f(x) = g(x).

• Conversely, suppose, whenever x ∈ domain(f)∩ domain(g), f(x) = g(x). Further, to demon-
strate f ∪g is a function under this hypothesis, suppose (x, y) ∈ f ∪g and (x, z) ∈ f ∪g. Then
either (x, y) and (x, z) are members of either f or g separately, in which case y = z since
f and g are functions, or x ∈ domain(f) ∩ domain(g), in which case, y = f(x) = g(x) = z,
where f(x) = g(x) by hypothesis. Hence, f ∪ g is a function.

In the language of function restriction, this claim can be rephrased as f ∪ g is a function if and
only if f |domain(f)∩domain(g) = g|domain(f)∩domain(g).
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Exercise 2.25. Suppose f and g are both functions.

(n) If A is a subset of the codomain of f , explain why f(f−1(A)) is a subset of A.

(o) Give an example of a function f and subset of its codomain A for which A is not a subset of
f(f−1(A)).

(p) Find the domain of f ◦ g in terms of the domain of f and g as a preimage.

Solution:

(n) Suppose A is a subset of the codomain of f . Recall the image of f−1(A) under f is the set

f(f−1(A)) = {y ∈ codomain(f) | there is some x ∈ f−1(A) such that f(x) = y}.

Recall the preimage of A under f is the set

f−1(A) = {x ∈ domain(f) | f(x) ∈ A}.

We want to demonstrate the image of the preimage of A under f is a subset of A. If y ∈
f(f−1(A)), then there is some x ∈ f−1(A) such that f(x) = y. Since x ∈ f−1(A), then
f(x) ∈ A by definition. Since y = f(x), y ∈ A. Since y is an arbitrary element of f(f−1(A)),
we conclude f(f−1(A)) is a subset of A.

(o) Define f with domain {0} and codomain {1, 2} by f(0) = 1. Now, if A = {1, 2}, the codomain
itself, then f−1(A) = {0}, since f−1(codomain(f)) = domain(f) for all functions f . Then
f(f−1(A)) = {1}, since f(domain(f)) = range(f) for all functions f . Hence, A is not a subset
of f(f−1(A)).

As another example, the square function, sq, has domain R and codomain R, but range [0,∞).
If A = [−1, 1], then f−1(A) = [−1, 1], since if −1 ≤ x2 ≤ 1, then −1 ≤ x ≤ 1. Then
f(f−1(A)) = [0, 1], since if −1 ≤ x ≤ 1, then 0 ≤ x2 ≤ 1. Hence, A is not a subset of
f(f−1(A)).

In both cases, A is chosen so that some of its members are not in the range of f . This is the
only condition needed to ensure A is not a subset of f(f−1(A)).

(p) Suppose f and g are functions. Recall the domain of the composition of f with g, f ◦ g, is
defined to be the set of all x ∈ domain(g) such that g(x) ∈ domain(f). So,

domain(f ◦ g) = g−1(domain(f)).
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Exercise 2.26. If f, g, l,m are functions for which f ∪ g and l ∪m are functions, find the domain
of (f ∪ g) ◦ (l ∪m) as a union of preimages.

Solution: Suppose f, g, l,m are functions for which f ∪ g and l∪m are functions. By Theorem
2.23 (Composition of Piecewise) in the notes, we know

(f ∪ g) ◦ (l ∪m) = f ◦ l ∪ g ◦ l ∪ f ◦m ∪ g ◦m.

By Definition of the union of functions,

domain((f ∪ g) ◦ (l ∪m)) = domain(f ◦ l) ∪ domain(g ◦ l) ∪ domain(f ◦m) ∪ domain(g ◦m)

By Exercise 2.25 p,

domain((f ∪ g)◦ (l∪m)) = l−1(domain(f))∪ l−1(domain(g))∪m−1(domain(f))∪m−1(domain(g)).
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Exercise 2.36.

(b) The difference of two real-valued functions f and g is defined by

f − g := f + const−1 · g.

That is, for all x ∈ domain(f) ∩ domain(g), f − g(x) = f(x) − g(x). Express sgn as the the
difference of two indicator functions.

Solution:

(b) Recall, for a given set B, and given subset A of B, the indicator function of A of B is defined
to be

χA,B(x) =

{
1 if x ∈ A
0 if x 6∈ A

for all x ∈ B. χA,B(x) tells us whether x is in A or x is not in A. χA,B distinguishes members
of A apart from other members of B.

The sgn function is defined to be

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

for all x ∈ R. sgn(x) tells us whether x is positive, zero, or negative. By Trichotomy, these sets
are disjoint. It’s not difficult to verify

sgn = χ[0,∞),R − χ(−∞,0],R.

Notice these are both closed unbounded intervals. Notice also

sgn = χ(0,∞),R − χ(−∞,0),R.
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Exercise 2.38.

(d) If m1,m2, b1, b2 are real numbers, express lm2,b2 · lm1,b1 as a quadratic function.

(f) Demonstrate by way of example. The degree of the sum of two polynomials can be equal to
the maximum of their degrees.

(h) Provide an example of two degree three polynomials whose sum has degree 0.

Solution:

(d) For every x ∈ R,

lm2,b2 · lm1,b1(x) = (m2x+ b2)(m1x+ b1) = m1m2x
2 + (m1b2 +m2b1)x+ b1b2.

Hence,
lm2,b2 · lm1,b1 = qm1m2,m1b2+m2b1,b1b2 .

(f) If f(x) = x (degree 1) and g(x) = 1 (degree 0), then (f + g)(x) = x+ 1 (degree 1).

(h) If f(x) = x3 and g(x) = −x3+1, then f and g both have degree 3 and (f+g)(x) = x3−x3+1 = 1.
This means f + g is a nonzero constant and hence has degree 0.
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4 Polynomials

Exercise 4.11.

(a) Is there any real number c for which q1,−(c+1),c does not have real zeros?

(b) Find a ∈ R for which q1,0,a has

• no zeros,

• one zero, and

• two zeros.

Solution:

(a) The zeros of q1,−(c+1),c are the numbers{
c+ 1±

√
(c+ 1)2 − 4c

2

}
=

{
c+ 1±

√
(c− 1)2

2

}
=

{
c+ 1± (c− 1)

2

}
= {c, 1} .

These are real numbers if c is a real number.

(b) Note q1,0,a(x) = x2 + a and (x2 + a) = (x−
√
a)(x+

√
a) for all real x.

• If a < 0, then q1,0,a has no real zeros.

• If a = 0, then q1,0,a has one real zero.

• If a > 0, then q1,0,a has two real zeros.
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Exercise 4.14. Suppose f is any polynomial.

(a) If d is a nonzero constant polynomial, what are the unique polynomials q and r for which
f = q · d+ r and the degree of r is strictly less than the degree of d?

(b) If the degree of f is equal to the degree of d, what are the unique polynomials q and r for which
f = q · d+ r and the degree of r is strictly less than the degree of d?

(c) If the degree of f is strictly less than the degree of d, what are the unique polynomials q and
r for which f = q · d+ r and the degree of r is strictly less than the degree of d?

(d) Construct polynomials f, d, q, r for which f = q · d+ r and the degree of r is two less than the
degree of d and the degree of q is equal to the degree of d.

Solution:

(a) If d is a nonzero constant polynomial (degree 0), then r must be the zero polynomial, since
the zero polynomial is the only polynomial with degree less than 0. Then q = f

d . Since f is a
polynomial and d is a nonzero constant function, then q is a polynomial.

(b) If the degree of f is equal to the degree of d, then q must be a nonzero constant, since the
degree of a product of two polynomials is the sum of their degrees. If a is the leading coefficient
of f and b is the leading coefficient of d, then a and b are not zero. Define

q = consta
b

and
r = f − q · d.

Notice the degree and leading coefficient of f and q · d are the same. Hence, their difference
has degree less than f , and hence d. So, the degree of r is less than the degree of d. Moreover,

f = q · d+ f − q · d = q · d+ r.

(c) If the degree of f is strictly less than the degree of d, define q = const0 and r = f . Then the
degree of r is less than the degree of d and f = const0 · d+ f = q · d+ r.

(d) If r = const1, d = q = sq, and f(x) = x4 + 1 for every real x, then the degree of d and q are
both two, the degree of r is zero, and f = q · d+ r.
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Exercise 4.16.

(a) Find q in the conclusion of the remainder theorem.

(b) Generalize the remainder theorem to work for lm,d if m 6= 0 instead of only l1,−k. In other
words, what is the remainder after dividing f by lm,d if m 6= 0?

Solution:

(a) For any polynomial f , for any real number k, we wish to find polynomial q such that f =
q · l1,−k + constf(k). We can write f(x) =

∑n
i=0 ai(x − k)i for some ai, n and every x. In this

case, a0 = f(k) and q(x) =
∑n

i=1 ai(x− k)i−1.

(b) The remainder will still be a constant, since the degree of the divisor is one. Hence, f = q·lm,d+r
for some polynomial q and some constant r. Then f

(
− d

m

)
= q

(
− d

m

)
·
(
m
(
− d

m

)
+ d
)

+ r = r.
Hence,

r = f

(
− d

m

)
.
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Exercise 4.21.

1. Give an example of a real function which is positive on the closed interval [−1, 0] and is
negative on the half-open interval (0, 1].

2. Is it possible for this function to be a polynomial? Why or why not?

Solution:

1. Let f(x) =

{
1 if − 1 ≤ x ≤ 0

−1 if 0 < x ≤ 1.

2. No. This is by the intermediate value theorem. If f is a polynomial which is positive on
[−1, 0) and negative on (0, 1], then f(0) = 0 necessarily by the intermediate value theorem.
Hence, f(0) is not positive. So, f(0) cannot be positive if f is negative on (0, 1].
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Exercise 4.27.

1. Sketch the graph of a polynomial which has exactly two local maximum values, one local
minimum value and three zeros. Hint: Think about what the multiplicity of at least one of
the zeros has to be.

2. Find an equation for the polynomial found in part (a).

Solution:

1.

f

2. f(x) = −x2 (x− 1) (x− 2) for all x.
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5 Rational Functions

Exercise 5.10.

(a) If a is a real number, does the rational function

l1,−a · (recip ◦ q1,−2a,a2)

have any infinite limits at a point?

(b) If a is a real number, does the rational function

q1,−2a,a2 · (recip ◦ l1,−a)

have any infinite limits at a point?

(c) Does the rational function
l1,0 · (recip ◦ q1,0,1)

have any infinite limits at a point?

Solution: Note q1,−2a,a2 = l1,−a · l1,−a. Hence, the multiplicity of a as a zero of l1,−a is one and
the multiplicity of a as a zero of q1,−2a,a2 is two.

(a) By Theorem 5.6(a), this rational function has an infinite limit at a. In particular,

lim
a−

l1,−a · (recip ◦ q1,−2a,a2) = −∞

and
lim
a+

l1,−a · (recip ◦ q1,−2a,a2) =∞.

(b) By Theorem 5.11, this rational function does not have an infinite limit at a, since it has a
removable discontinuity there. In fact,

lim
a±

q1,−2a,a2 · (recip ◦ l1,−a) = 0.

And the domain of this rational function is R \{a}. So, this function does not have any infinite
limits at a point.

(c) No. This is because q1,0,1 does not have any real zeros. This means the domain of l1,0 ·
(recip ◦ q1,0,1) is R.
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6 Invertibility and Radical Functions

Exercise 6.5.

(c) When is an affine function lm,d, for real numbers m, d, invertible? What is its inverse in this
case?

(d) Find all the affine functions which are their own inverse.

(e) For which real numbers a is l1,a invertible? For those a, find the inverse of l1,a. l1,a is called
addition on the right by a.

(f) For which real numbers a is la,0 invertible? For those a, find the inverse of la,0. la,0 is called
multiplication on the left by a.

Solution:

(c) Suppose lm,d is invertible. In particular, lm,d is one-to-one. That is, lm,d(x) = lm,d(y) implies
x = y. But lm,d(x) = lm,d(y) if and only if mx + d = my + d if and only if mx = my. And
mx = my implies x = y if and only if m 6= 0. So, we conclude lm,d is invertible if and only if
m 6= 0. If m 6= 0, then

l−1m,d = lm−1,−m−1d.

To check, for all x ∈ R,

lm−1,−m−1d(lm,d(x)) = m−1(mx+ d)−m−1d = x

and
lm,d(lm−1,−m−1d(x)) = m(m−1x−m−1d) + d = x.

Hence,
lm−1,−m−1d ◦ lm,d = idR

and
lm,d ◦ lm−1,−m−1d = idR.

(d) We note lm,d ◦ lm,d = idR if and only if, for all x ∈ R,

m(mx+ d) + d = x

if and only if, for all x ∈ R,
(m2 − 1)x+ (m+ 1)d = 0.

And m2 − 1 = (m+ 1)(m− 1). By Exercise 2.38(a), a polynomial is completely determined by
its coefficients. So, if a polynomial is identically zero, then its coefficients are. That is,{

(m+ 1)(m− 1) = 0

(m+ 1)d = 0.

Hence, by second equation and the zero product property, either m + 1 = 0 or d = 0. If
m + 1 = 0, then m = −1. If d = 0 but m + 1 6= 0, then by the first equation and the zero
product property, m = 1. Hence, if lm,d is its own inverse for some real m, d, then either m = 1
and d = 0, which is idR, or m = −1 and d is arbitrary. That is, the only lines which are their
own inverse are the identity function and any line perpendicular to the identity.
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(e) For any number a ∈ R, l1,a is invertible. In this case, the inverse of l1,a is l1,−a, since x+a−a = x
and x−a+a = x for all real x. In words, the inverse of addition on the right by a is subtraction
on the right by a.

(f) For any nonzero number a ∈ R, la,0 is invertible. In this case, the inverse of la,0 is la−1,0, since
aa−1x = x and a−1ax = x for all x ∈ R. In words, if a 6= 0, the inverse of multiplication on
the left by a is multiplication on the left by a−1. If a = 0, la,0 is not one-to-one because it’s the
constant zero function, hence it is not invertible.
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Exercise 6.7. Suppose a is a nonzero real number.

(g) Find the inverse of ida as another power function.

(i) Explain why id
1
2 ◦ sq = abs \{(0, 0)} as relations by way of Theorem ??.

(j) Find the domain, range and inverse of the function

R = l1,1 ◦ id3 · (recip ◦l1,−8 ◦ id3).

Solution:

(g) If f is the inverse of ida, then
x = f(ida(x)) = f(xa)

for all x > 0 and
(f(y))a = ida(f(y)) = y

for all y in the domain of f . This last equation implies

f(y) = y
1
a

for all y in the domain of f . The first equation implies, if y = xa, then x = y
1
a and

y
1
a = f(y).

And recall, for every positive number x, there is a unique positive number y such that x = y
1
a .

Hence, we conclude

(ida)−1 = id
1
a .

(i) First, the domain of id
1
2 ◦ sq is R \{0} since

domain(id
1
2 ◦ sq) = sq−1(domain(id

1
2 )) = sq−1((0,∞)) = R \{0}.

The last equality is the statement of Theorem 4.2(a). R \{0} is the domain of abs \{(0, 0)} as
well.

Next, if

(x, y) ∈ id
1
2 ◦ sq,

then x 6= 0 and y =
√
x2. If x > 0, then y =

√
x2 = x = |x|. Hence,

(x, y) = (x, |x|) ∈ abs \{(0, 0)}.

If x < 0, then −x > 0, and y =
√
x2 =

√
(−x)2 = −x = |x|. Hence,

(x, y) = (x, |x|) ∈ abs \{(0, 0)}

in this case as well.
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If
(x, y) ∈ abs \{(0, 0)},

then x 6= 0 and y = |x|. As we have just demonstrated, |x| =
√
x2. Hence,

(x, y) ∈ id
1
2 ◦ sq .

As an aside, how do we justify the statement x > 0 implies
√
x2 = x? We know, if b ≥ 0, there

is a unique a ≥ 0 such that b = a2. Namely, a =
√
b. Since x2 > 0, there is a unique a > 0 such

that x2 = a2. Since sq is strictly increasing on (0,∞), it is one-to-one there. Hence, a = x.
That is,

√
x2 = a = x. Similarly, if x < 0, then −x > 0, and we can apply the same reasoning

to conclude
√
x2 =

√
(−x)2 = −x.

√
x2 =

√
(−x)2 because x2 = (−x)2 and id1/2 is a function.

(j) The domain of R is

domain(l1,1◦id3)∩domain(recip ◦l1,−8◦id3) = (id3)−1(domain(l1,1))∩(l1,−8◦id3)−1(domain(recip))

= (id3)−1(R) ∩ (id3)−1((l1,−8)
−1(R \{0}))

= (0,∞) ∩ (id3)−1(R \{8}) = (0,∞) ∩ (R \{2}) = (0, 2) ∪ (2,∞).

The range of R is found like so. We notice

R(t) =
t3 + 1

t3 − 8

for all t ∈ (0, 2) ∪ (2,∞). If 0 < t < 2, then

1 < t3 + 1 < 9

and
1

t3 − 8
< −1

8
.

So,

R(t) =
t3 + 1

t3 − 8
= (t3 + 1) · 1

t3 − 8
< −1

8
(t3 + 1) < −1

8
.

Notice

R(t) = 1 +
9

t3 − 8

by the division lemma. So, if t > 2, then R(t) > 1. Combining this, we’ve proved

range(R) ⊆ (−∞,−1

8
) ∪ (1,∞). (6.8)

we conjecture the range of R is

(−∞,−1

8
) ∪ (1,∞).

We will prove this in the following way.
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Finding the inverse of a function is a matter of expressing the input of the function in terms
of its output. Again,

R(t) =
t3 + 1

t3 − 8

for all t ∈ (0, 2) ∪ (2,∞). Hence, if s = R(t), then

s(t3 − 8) = t3 + 1.

Hence,
st3 − t3 = 1 + 8s.

Hence,
t3(s− 1) = 1 + 8s.

Define

Q(s) = t =

(
8s+ 1

s− 1

) 1
3

for all s ∈ (−∞,−1
8) ∪ (1,∞).

We claim Q is the inverse of R. Showing Q◦R = iddomain(R) and R◦Q = iddomain(Q) will verify
that Q is the inverse of R, and is left to the reader.

We instead show (−∞,−1
8) ∪ (1,∞) is the range of R. If s < −1

8 , then 8(s− 1) < 8s + 1 < 0
and s− 1 < 0. So,

0 <
8s+ 1

s− 1
< 8.

Hence, if s < −1
8 , then

0 < Q(s) < 2

because id
1
3 is increasing on R. So, if

s < −1

8
,

then there exists t ∈ (0, 2) such that R(t) = s. Namely,

t = Q(s).

Since
R(Q(s)) = s

for all s ∈ domain(Q), this proves

(−∞,−1

8
) ⊆ range(R).

Similarly, if s > 1, then 0 < 8(s− 1) < 8s+ 1. So,

8 <
8s+ 1

s− 1
.

Hence, if s > 1, then
2 < Q(s).
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So, if
s > 1,

then there exists t ∈ (2,∞) such that R(t) = s. Namely,

t = Q(s).

Since
R(Q(s))

for all s ∈ domain(Q), this proves

(1,∞) ⊆ range(R).

Hence,

(−∞,−1

8
) ∪ (1,∞) ⊆ range(R).

This, combined with Equation 6.8, proves

range(R) = (−∞,−1

8
) ∪ (1,∞).
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7 exponential functions

Exercise 7.3. Use the rules of exp and log to demonstrate these identities of their average rate of
change.

Solution:

expa(s+ t)− expa(s)

t
=
as+t − as

t
=
as · at − as

t
=
as(at − 1)

t
= as · a

t − 1

t
.

loga(A+B)− loga(A)

B
=

loga(A+B) + loga(A−1)

B
=

loga((A+B)A−1)

B

=
1

B
· loga(1 +BA−1)

= loga((1 +BA−1)
1
B ).
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Exercise 7.4. Suppose a, b are positive, nonone real numbers, and m,n are nonzero real numbers,
and k, d are real numbers.

(a) Find the inverse of ln,k ◦ expa ◦ lm,d as a composition involving linear functions.

(b) Use properties of exponents to write ln,k ◦ expa ◦ lm,d as ls,u ◦ expb ◦ lw,v for some real numbers
s, u, w and v and where |s| = 1.

(c) In the above exercise, find b for which w = 1.

Solution:

(a) Recall if f and g are invertible, then their composition f ◦ g is, with inverse g−1 ◦ f−1. Since
expa is invertible with inverse loga, and ln,k is invertible with inverse ln−1,−n−1k, it follows the
inverse of ln,k ◦ expa ◦ lm,d is

(ln,k ◦ expa ◦ lm,d)−1 = l−1m,d ◦ (ln,k ◦ expa)−1 = lm−1,−m−1d ◦ loga ◦ln−1,−n−1k.

(b) Notice ln,k ◦ expa ◦ lm,d(x) = namx+d + k for all x ∈ R. So, ln,k ◦ expa ◦ lm,d = ls,u ◦ expb ◦ lw,v

if and only if namx+d + k = sbwx+v + u for all x ∈ R.

We note n = sgn(n)|n| = sgn(n)aloga(|n|) since |n| > 0 by assumption. Hence,

namx+d = sgn(n)aloga(|n|)amx+d = sgn(n)amx+d+loga(|n|).

Also,
ay = blogb(a)y

for any real y. So,
namx+d = sgn(n)blogb(a)(mx+d+loga(|n|)).

Hence, if
s = sgn(n),

then |s| = 1. And if
u = k,

w = m logb(a),

and
v = (loga(|n|) + d) logb(a),

then namx+d + k = sgn(n) expb

(
m logb(a)x+ (loga(|n|) + d) logb(a)

)
+ k = sbwx+v + u for all

x ∈ R.
ln,k ◦ expa ◦ lm,d = ls,u ◦ expb ◦ lw,v.

(c) We know w = m logb(a). So,
w = 1

if and only if

b
1
m = a

if and only if
b = am.
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Exercise 7.5.

(a) Find all real numbers t such that (
1

log2 t

)2

+ logt 8 = 4.

(b) Find all real numbers t such that

logt(2)− log4(t) = log2(3t).

Solution:

(a) We note

logt(8) =
log2(8)

log2(t)
=

3

log2(t)

by the change of base formula and that 23 = 8. Hence,(
1

log2 t

)2

+ logt 8 = 4

if and only if (
1

log2 t

)2

+
3

log2(t)
− 4 = 0.

If u =
1

log2 t
, then

u2 + 3u− 4 = 0.

Hence, (
1

log2 t

)2

+ logt 8 = 4

if and only if
(u+ 4)(u− 1) = 0

as long as u =
1

log2 t
. Hence, by the Zero Product Property, either

1

log2 t
= −4

or
1

log2 t
= 1.

Hence, either

log2(t) = −1

4
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or
log2(t) = 1.

Hence, either

t = 2−
1
4

or
t = 2.

The verification is left to the reader.

(b) Notice logt(2) = log2(2)
log2(t)

= 1
log2(t)

, log4(t) = log2(t)
2 and log2(3t) = log2(3)+log2(t) for all positive,

nonone t. Hence,
logt(2)− log4(t) = log2(3t)

if and only if
1

log2(t)
− log2(t)

2
= log2(3) + log2(t)

if and only if
2− (log2(t))

2 = 2 log2(3) log2(t) + 2(log2(t))
2

if and only if
3(log2(t))

2 + log2(9) log2(t)− 2 = 0

if and only if

log2(t) =
log2(9)±

√
(log2(9))2 + 24

6

by the quadratic formula if and only if

t = exp2


(
− log2 (9)±

√
(log2 (9))2 + 24

)
6

 .

The verification of these solutions is left to the reader.
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Exercise 7.6. Suppose b is a real number greater than one. Define

f = expb ◦ (− recip)|(0,∞) ∪ const(−∞,0],0.

Recall − recip |(0,∞)(x) = − 1
x for all x > 0, the restriction of the negative reciprocal to (0,∞). And

const(−∞,0],0(x) = 0 if x ≤ 0, the constant zero function on (−∞, 0].

(a) What is the domain of f?

(b) What is the range of f?

(c) Is f invertible? If not, explain why.

(d) What is the largest interval, I, on which f is one-to-one? Find the inverse of f |I .

(e) What is the global data of f? That is, does f have any limits at infinity?

(f) Sketch the graph of f .

Solution:

(a) The domain of f is R, since it is the union of a function with domain (0,∞) with a function
with domain [0,∞).

(b) We claim the range of f is [0, 1). To prove this, we note, expb(R) = (0,∞). Since b > 1, expb

is increasing. And expb(0) = 1. Hence, expe((−∞, 0)) = (0, 1). If x > 0, then − 1
x < 0 and

f(x) = e−
1
x . Hence,

f(x) ∈ (0, 1).

Hence,
f((0,∞)) ⊆ expb ◦ (− recip)|(0,∞)((0,∞)) ⊆ (0, 1).

If y ∈ (0, 1), then there is some x > 0 such that f(x) = y. Namely, x = − 1
logb(y)

. Hence,

(0, 1) ⊆ range(f). And
f((−∞, 0]) = {0},

since f is constant there. Hence,
range(f) = [0, 1).

(c) f is not invertible because f is not one-to-one. For example, f(−1) = 0 = f(0).

(d) Let I = [0,∞). f |I is one-to-one, as noted by part (b). Define

g = − recip ◦ logb |(0,1) ∪ {(0, 0)}.

We claim g is the inverse of f |I .
if 0 < y < 1, then g(y) = − 1

logb(y)
> 0 and

f |I(g(y)) = expb

(
− 1

− 1
logb(y)

)
= expb(logb(y)) = y.
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And f(g(0)) = 0.

Similarly, if x > 0, then 0 < f |I(x) < 1 and

g(f |I(x)) = − 1

logb(expb(− 1
x))

= − 1

− 1
x

= x.

And g(f(0)) = 0. Hence,
f |I ◦ g = iddomain(g)

and
g ◦ f |I = iddomain(f |I).

Any other interval larger than I includes negative numbers. And we know f is not one-to-one
on any interval containing 0 and a negative number.

(e) We prove
lim
∞
f = 1

and
lim
−∞

f = 0.

lim
∞
f = lim

∞
expb ◦(− recip) = expb ◦(lim∞ (− recip)) = expb(0) = 1.

The second step follows from the continuity of expb . And

lim
−∞

f = lim
−∞

const0 = 0.

(f)

−2 −1 1 2 3 4 5

−1

1
f
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