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Abstract
The Asymptotic Plateau Problem asks for the existence of smooth complete hypersur-

faces of constant mean curvature with prescribed asymptotic boundary at infinity in

the hyperbolic space ℍ𝑛+1. The modified mean curvature flow (MMCF)

𝜕𝐅
𝜕𝑡

= (𝐻 − 𝜎)𝝂, 𝜎 ∈ (−𝑛, 𝑛),

was firstly introduced by Xiao and the second author a few years back in [15], and it

provides a tool using geometric flow to find such hypersurfaces with constant mean

curvature in ℍ𝑛+1. Similar to the usual mean curvature flow, the MMCF is the natural

negative 𝐿2-gradient flow of the area-volume functional (Σ) = 𝐴(Σ) + 𝜎𝑉 (Σ) asso-

ciated to a hypersurface Σ. In this paper, we prove that the MMCF starting from an

entire locally Lipschitz continuous radial graph exists and stays radially graphic for

all time. In general one cannot expect the convergence of the flow as it can be seen

from the flow starting from a horosphere (whose asymptotic boundary is degenerate

to a point).
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1 INTRODUCTION

Mean curvature flow (MCF) was first studied by Brakke [4] in the context of geometric measure theory. Later, smooth compact

surfaces evolved by MCF in Euclidean space were investigated by Huisken in [11] and [12], and in arbitrary ambient manifolds

in [13]. The evolution of entire graphs by MCF in ℝ𝑛+1 was also studied in [6], the result being improved in [7]. Lately, the

MCF in Euclidean space has attracted much attention. See, e.g., the survey of various aspects of the MCF of hypersurfaces by

Colding, Minicozzi and Pedersen [5] and the references therein. In [19], Unterberger considered the MCF in hyperbolic space

ℍ𝑛+1 and proved that if the initial surface Σ0 has bounded hyperbolic height over 𝕊𝑛
+, (i.e., 𝜕Σ0 = 𝜕𝕊𝑛

+), then under the MCF,

Σ𝑡 converges in 𝐶∞ to 𝕊𝑛
+, which is minimal.

The Asymptotic Plateau Problem of finding smooth complete hypersurfaces of constant mean curvature in hyperbolic space

ℍ𝑛+1 with prescribed asymptotic boundary at infinity has also been studied over the years, see [1], [9], [14], [18] and [16].
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In [8] Guan and Spruck proved the existence and uniqueness of smooth complete hypersurfaces of constant mean curvature

𝜎 ∈ (−𝑛, 𝑛) in hyperbolic space with prescribed 𝐶1,1 star-shaped asymptotic boundary at infinity. In [17], among others, De

Silva and Spruck recovered this result using the method of calculus of variations. In the previous joint work [15] of Xiao and

the second author, the following modified mean curvature flow (MMCF) was first introduced, which is the natural negative

𝐿2-gradient flow of the area-volume functional (Σ) = Ω(𝑣) = 𝐴Ω(𝑣) + 𝜎𝑉Ω(𝑣) associated to Σ as in [17]. It can be used to

continuously deform hypersurfaces in ℍ𝑛+1 into constant mean curvature hypersurfaces with prescribed asymptotic boundary

at infinity.

Let 𝐅(𝐳, 𝑡) ∶ 𝕊𝑛
+ × [0,∞) → ℍ𝑛+1 be the complete embedded star-shaped hypersurfaces (as complete radial graphs over 𝕊𝑛

+)

moving by the MMCF in hyperbolic space ℍ𝑛+1, where 𝕊𝑛
+ is the upper hemisphere of the unit sphere 𝕊𝑛 in ℝ𝑛+1 and the

half-space model of ℍ𝑛+1 is used. That is, 𝐅(⋅, 𝑡) is a one-parameter family of smooth immersions with images Σ𝑡 = 𝐅
(
𝕊𝑛
+, 𝑡

)
,

satisfying the evolution equation

⎧⎪⎪⎨⎪⎪⎩

𝜕

𝜕𝑡
𝐅(𝐳, 𝑡) = (𝐻 − 𝜎)𝝂𝐻, (𝐳, 𝑡) ∈ 𝕊𝑛

+ × [0,∞),

𝐅(𝐳, 0) = Σ0, 𝐳 ∈ 𝕊𝑛
+,

𝐅(𝐳, 𝑡) = Γ, 𝐳 ∈ 𝜕𝕊𝑛
+,

(1.1)

where 𝐻 =
∑𝑛

𝑖=1 𝜅
𝐻
𝑖

denotes the hyperbolic mean curvature of Σ𝑡, 𝜎 ∈ (−𝑛, 𝑛) is a constant, and 𝝂𝐻 denotes the outward unit

normal of Σ𝑡 with respect to the hyperbolic metric. More precisely, suppose the solution 𝐅(𝐳, 𝑡) to the MMCF (1.1) can be

represented as a complete radial graph over 𝕊𝑛
+. That is,

𝐅(𝐳, 𝑡) = 𝑥(𝐳, 𝑡) = 𝑒𝑣(𝐳,𝑡)𝐳, (𝐳, 𝑡) ∈ 𝕊𝑛
+ × (0,∞), (1.2)

and Γ ⊂ 𝜕∞ℍ𝑛+1 =
{
𝑥𝑛+1 = 0

}
is the radial graph of a function 𝑒𝜙 over 𝜕𝕊𝑛

+, i.e., Γ can be represented by

Γ(𝐳) = 𝑒𝜙(𝐳)𝐳, 𝐳 ∈ 𝜕𝕊𝑛
+.

We call such a function 𝑣(𝐳, 𝑡) the radial height of Σ𝑡 = 𝐅(⋅, 𝑡). Note that Σ𝑡 remains a radial graph as long as the support function⟨𝝂𝐸, 𝑥⟩𝐸 satisfies

⟨𝝂𝐸, 𝑥⟩𝐸 > 0, (1.3)

where 𝝂𝐸 is the Euclidean outward unit normal vector of Σ𝑡. Then one observes that the Cauchy initial-boundary value problem

for the MMCF (1.1) is equivalent to the following degenerate parabolic PDE with initial and boundary conditions:

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑣(𝐳, 𝑡)
𝜕𝑡

= 𝑦2
𝛼𝑖𝑗𝑣𝑖𝑗

𝑛
− 𝑦𝐞 ⋅ ∇𝑣 − 𝜎𝑦𝑤, (𝐳, 𝑡) ∈ 𝕊𝑛

+ × (0,∞),

𝑣(𝐳, 0) = 𝑣0(𝐳), 𝐳 ∈ 𝕊𝑛
+,

𝑣(𝐳, 𝑡) = 𝜙(𝐳), (𝐳, 𝑡) ∈ 𝜕𝕊𝑛
+ × [0,∞),

(1.4)

where we represent Σ0 as the radial graph of the function 𝑒𝑣0 over 𝕊𝑛
+ and 𝑣0

|||𝜕𝕊𝑛
+
= 𝜙. Here 𝑦 = ⟨𝐞, 𝐳⟩𝐸 , and 𝐞 is the unit vector in

the positive 𝑥𝑛+1 direction in ℝ𝑛+1. Also, 𝛼𝑖𝑗 = 𝛾𝑖𝑗 − 𝛾𝑖𝑘𝑣𝑘𝑣𝑗

𝑤2 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑤 =
(
1 + |∇𝑣|2)1∕2 and we denote by 𝛾𝑖𝑗 the standard

metric of 𝕊𝑛
+ and 𝛾𝑖𝑗 its inverse. Note that the MCF, i.e., the case of 𝜎 = 0 for (1.1) was considered in [19], but the case of 𝜎 ≠ 0

is substantially different, see Remark 3.6.

In [15], the Cauchy initial-boundary value problem (1.4) for the MMCF of complete radial graphs was studied. The flow

starting from an entire star-shaped Lipschitz continuous radial graph with the uniform local ball condition on the asymptotic

boundary was shown to exist for all time and converge to a complete hypersurface of constant mean curvature with prescribed

asymptotic boundary at infinity. Let us elaborate a bit on the uniform local ball condition. Due to the degeneracy at infinity of

the MMCF (1.4) for radial graphs, we will use the method of continuity and consider the approximate problem. For fixed 𝜖 > 0
sufficiently small, let Γ𝜖 be the vertical translation of Γ ⊂

{
𝑥𝑛+1 = 0

}
to the plane

{
𝑥𝑛+1 = 𝜖

}
and let Ω𝜖 be the subdomain

of 𝕊𝑛
+ such that Γ𝜖 is the radial graph over 𝜕Ω𝜖 (see Figure 1). For any 𝜖 ≥ 0 sufficiently small and any point 𝑃 ∈ 𝜕Σ𝜖

0 = Γ𝜖

(denoting Σ0
0 = Σ0 and Γ0 = Γ), the uniform star-shapedness of Γ𝜖 implies that there exist balls 𝐵𝑅1

(𝑎, 𝑃 ) and 𝐵𝑅2
(𝑏, 𝑃 ) with
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radii 𝑅1 > 0 and 𝑅2 > 0 and centered at 𝑎 =
(
𝑎′,−𝜎𝑅1

)
and 𝑏 =

(
𝑏′, 𝜎𝑅2

)
, respectively, such that

{
𝑥𝑛+1 = 𝜖

}
∩ 𝐵𝑅1

(𝑎, 𝑃 ) is

internally tangent to Γ𝜖 at 𝑃 and
{
𝑥𝑛+1 = 𝜖

}
∩ 𝐵𝑅2

(𝑏, 𝑃 ) is externally tangent to Γ𝜖 at 𝑃 . 𝜕𝐵𝑅1
(𝑎, 𝑃 ) and 𝜕𝐵𝑅2

(𝑏, 𝑃 ) are the so-

called equidistance spheres. Note that in a small neighborhood 𝐵𝛿(𝑃 ) around 𝑃 for some 𝛿 > 0, both 𝜕𝐵𝑅1
(𝑎, 𝑃 ) ∩ 𝐵𝛿(𝑃 ) and

𝜕𝐵𝑅2
(𝑏, 𝑃 ) ∩ 𝐵𝛿(𝑃 ) can be locally represented as radial graphs. We say that the initial hypersurfaces Σ𝜖

0’s satisfy the uniform

interior (resp. exterior) local ball condition whenever, for all 𝜖 ≥ 0 sufficiently small and all 𝑃 ∈ Γ𝜖 , we have Σ𝜖
0 ∩ 𝐵𝛿(𝑃 ) ∩

𝐵𝑅1
(𝑎, 𝑃 ) = {𝑃 } (resp. Σ𝜖

0 ∩ 𝐵𝛿(𝑃 ) ∩ 𝐵𝑅2
(𝑏, 𝑃 ) = {𝑃 }, see Figure 2), and the local radial graph 𝜕𝐵𝑅1

(𝑎, 𝑃 ) ∩ 𝐵𝛿(𝑃 ) (resp.

𝜕𝐵𝑅2
(𝑏, 𝑃 ) ∩ 𝐵𝛿(𝑃 )) has a uniform Lipschitz bound depending only on the star-shapedness of Γ. If the Σ𝜖

0’s satisfy both of

the uniform interior and exterior local ball conditions, then we say Σ0 satisfies the uniform local ball condition. Such a uniform

gradient bound on the asymptotic boundary was necessary for a version of maximum principle to be applicable in order to obtain

a global gradient bound, which ensures the long time existence and convergence of the flow.

In this paper we would like to show the long time existence of the MMCF without the uniform local ball condition at the

infinity of the initial hypersurface. To this end, we consider the MMCF starting from an entire locally Lipschitz continuous

radial graph Σ0 ⊂ ℍ𝑛+1 and show the long time existence of the flow. More precisely, we prove

Theorem 1.1. Let 𝐅0 ∶ 𝕊𝑛
+ → ℍ𝑛+1 be such that Σ0 = 𝐅0

(
𝕊𝑛
+
)

is an entire locally Lipschitz continuous radial graph over
𝕊𝑛
+. Then the Cauchy initial-boundary value problem for the MMCF (1.1) has a solution 𝐅(𝐳, 𝑡) ∈ 𝐶∞(

𝕊𝑛
+ × (0,∞)

)
∩

𝐶0+1,0+1∕2(𝕊𝑛
+ × [0,∞)

)
and 𝐅

(
𝕊𝐧
+, 𝑡

)
is a complete radial graph over 𝕊𝑛

+ for any 𝑡 ≥ 0.

Remark 1.2. By the work of Guan–Spruck [8], Xiao and the second author [15], given a 𝐶1,1 star-shaped 𝑛 − 1 dimensional

closed submanifold at the infinity 𝜕∞ℍ𝑛+1, we can find a suitable initial hypersurface such that the MMCF exists for all time

and converges to a hypersurface of constant mean curvature which has the given submanifold as the asymptotic boundary. On

the other hand, MMCF, starting from a horosphere
{
𝑥𝑛+1 = 𝑐

}
(whose infinity is degenerate to a point in 𝜕∞ℍ𝑛+1), exists for

all time but never converges. Given such an example, one cannot expect the full convergence of the flow, as it depends on the

behavior of the initial asymptotic boundary. We expect that some intermediate geometric condition that is weaker (i.e., allows

degeneracy of the initial asymptotic boundary to some extent) than the uniform local ball condition in [15] will guarantee the

convergence of the flow. This will be investigated in our forthcoming paper.

The paper is organized as follows. In Section 2, we fix some notation and review some necessary preliminary materials. In

Section 3, we use the evolution equation of the support function ⟨𝝂𝐸, 𝑥⟩𝐸 (see Proposition 3.5) and an appropriate space-time

cut-off function together with a conventional maximum principle argument to show a uniform interior gradient estimate for the

MMCF (see Theorem 3.8). In Section 4, we show the interior estimates on all other higher order derivatives for the MMCF (see

Theorem 4.2 and Theorem 4.4). We prove the main Theorem 1.1 in Section 5.
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2 PRELIMINARY

Let’s first fix some notation. Operators without subscripts or superscripts are operators on Σ𝑡. Corresponding operators in hyper-

bolic space, Euclidean space, or on 𝕊𝑛
+ will be denoted with either a subscript or a superscript 𝐻,𝐸, 𝑆, respectively. Greek

indices will range from 1 to 𝑛 + 1, while Latin indices will range from 1 to 𝑛.

Denote ds2
𝐻

by ⟨⋅, ⋅⟩𝐻 , and ∇𝐻 the Levi–Civita connection on ℍ𝑛+1. The ambient Riemann curvature tensor with respect to

the hyperbolic metric used in this paper is(
𝑅𝐻

)
(𝑋, 𝑌 )𝑍 = ∇𝐻

𝑌
∇𝐻

𝑋
𝑍 − ∇𝐻

𝑋
∇𝐻

𝑌
𝑍 + ∇𝐻

[𝑋,𝑌 ]𝑍.

Let
{
𝐞𝛼
}𝑛+1
𝛼=1 be the coordinate basis of ℍ𝑛+1 with respect to the standard coordinates 𝑥𝛼 of ℝ𝑛+1

+ . Define
(
𝑅𝐻

)
𝛼𝛽𝛾𝛿

=⟨(
𝑅𝐻

)(
𝐞𝛼, 𝐞𝛽

)
𝐞𝛾 , 𝐞𝛿

⟩
𝐻

, the components of the hyperbolic Riemann curvature tensor. And define the components of the hyper-

bolic Ricci tensor (
Ric𝐻

)
𝛼𝛾

=
(
ds2

𝐻

)𝛽𝛿(
𝑅𝐻

)
𝛼𝛽𝛾𝛿

, (2.1)

where
(
ds2

𝐻

)𝛼𝛾
is the inverse of the metric ds2

𝐻
.

Since the upper-half space model of hyperbolic space ℍ𝑛+1 and ℝ𝑛+1
+ are conformal, we have

Proposition 2.1. For any two vector fields 𝑋, 𝑌 on ℍ𝑛+1,

∇𝐻
𝑋
𝑌 = ∇𝐸

𝑋
𝑌 + 1

𝑥𝑛+1

(⟨𝑋, 𝑌 ⟩𝐸𝐞 − ⟨𝑋, 𝐞⟩𝐸𝑌 − ⟨𝑌 , 𝐞⟩𝐸𝑋
)
,

where∇𝐸 denotes the Levi–Civita connection onℝ𝑛+1
+ with respect to the standard Euclidean metric, ⟨⋅, ⋅⟩𝐸 denotes the standard

Euclidean inner product, and 𝐞 = 𝐞𝑛+1.

Let
{
𝐯𝑖
}𝑛

𝑖=1 be a basis of 𝑇𝑝Σ𝑡, and denote the induced metric on Σ𝑡 by

𝑔𝑖𝑗 =
⟨
𝐯𝑖, 𝐯𝑗

⟩
𝐻
.

Denote the second fundamental form on Σ𝑡 by

𝑎𝑖𝑗 =
⟨
∇𝐻
𝐯𝑖
𝐯𝑗 , 𝝂𝐻

⟩
𝐻
,

so that the mean curvature of Σ𝑡 with respect to the hyperbolic metric is

𝐻 = 𝑔𝑖𝑗𝑎𝑖𝑗 ,

where 𝑔𝑖𝑗 is the inverse of 𝑔𝑖𝑗 . With these we have

Proposition 2.2.

𝜅𝐻
𝑖

= 𝑥𝑛+1𝜅
𝐸
𝑖
+ 𝝂

𝑛+1,

where 𝜅𝐻
𝑖

and 𝜅𝐸
𝑖

are hyperbolic and Euclidean principle curvatures of Σ𝑡, respectively, and 𝝂
𝑛+1 = ⟨𝝂𝐸, 𝐞⟩𝐸 . Therefore,

𝐻 = 𝑥𝑛+1𝐻
𝐸 + 𝑛𝝂𝑛+1,

where 𝐻𝐸 is the Euclidean mean curvature and 𝝂𝐸 is the Euclidean unit normal of Σ𝑡. That is, 𝝂𝐻 = 𝑥𝑛+1𝝂𝐸 .

Proof. Note that the hyperbolic principle curvatures 𝜅𝐻
𝑖

’s are the roots of

det
(
𝑎𝑖𝑗 − 𝜅𝐻𝑔𝑖𝑗

)
= det

(
𝑎𝐸
𝑖𝑗

𝑥𝑛+1
− 𝝂

𝑛+1

𝑥2
𝑛+1

𝑔𝐸
𝑖𝑗
− 𝜅𝐻

𝑔𝐸
𝑖𝑗

𝑥2
𝑛+1

)

= 𝑥−𝑛
𝑛+1 det

(
𝑎𝐸
𝑖𝑗
− 𝜅𝐻 − 𝝂

𝑛+1

𝑥𝑛+1
𝑔𝐸
𝑖𝑗

)
,
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so that the proposition follows from

𝜅𝐸
𝑖
= 1

𝑥𝑛+1

(
𝜅𝐻
𝑖

− 𝝂
𝑛+1).

□

Proposition 2.3. For a function 𝑓 ∶ Σ𝑡 → ℝ, where Σ𝑡 moves by (1.1), we have(
𝜕

𝜕𝑡
− Δ

)
𝑓 = − 𝑥2

𝑛+1
(
Δ𝐸𝑓 −

⟨
∇𝐸
𝝂𝐸
∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸

)
+ 𝑥𝑛+1

(
(𝑛 − 2)

⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
+ 2

⟨
∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸
⟨𝝂𝐸, 𝐞⟩𝐸 − 𝜎

⟨
∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸

)
,

where Δ is the Laplace–Beltrami operator on Σ𝑡,
𝜕

𝜕𝑡
= 𝐹∗(𝜕∕𝜕𝑡) = (𝐻 − 𝜎)𝝂𝐻 , Δ𝐸 is the standard Euclidean Laplacian, and

∇𝐸𝑓 is the Euclidean gradient of 𝑓 .

Proof. Notice first

∇𝑓 = ∇𝐻𝑓 −
⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻
𝝂𝐻,

div = div𝐻 −
⟨
∇𝐻
𝝂𝐻

⋅, 𝝂𝐻

⟩
𝐻
,

∇𝐻𝑓 = 𝑥2
𝑛+1∇

𝐸𝑓 ,

div𝐻 = div𝐸 −𝑛 + 1
𝑥𝑛+1

⟨⋅, 𝐞⟩𝐸.

Along with Proposition 2.1, these give

Δ𝑓 =div∇𝑓

=div𝐻
(
∇𝐻𝑓 −

⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻
𝝂𝐻

)
−
⟨
∇𝐻
𝝂𝐻

(
∇𝐻𝑓 −

⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻
𝝂𝐻

)
, 𝝂𝐻

⟩
𝐻

=div𝐻 ∇𝐻𝑓 −
⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻
div𝐻 𝝂𝐻 − 𝝂𝐻

⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻
−
⟨
∇𝐻
𝝂𝐸
∇𝐻𝑓, 𝝂𝐸

⟩
𝐸
+ 𝝂𝐻

⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻

=div𝐻 ∇𝐻𝑓 −
⟨
∇𝐻
𝝂𝐸
∇𝐻𝑓, 𝝂𝐸

⟩
𝐸
+𝐻

⟨
∇𝐻𝑓, 𝝂𝐻

⟩
𝐻

=div𝐸
(
𝑥2
𝑛+1∇

𝐸𝑓
)
− (𝑛 + 1)𝑥𝑛+1

⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
−
⟨
∇𝐸
𝝂𝐸

(
𝑥2
𝑛+1∇

𝐸𝑓
)
, 𝝂𝐸

⟩
𝐸

− 𝑥𝑛+1
⟨
𝝂𝐸,∇𝐸𝑓

⟩
𝐸
⟨𝝂𝐸, 𝐞⟩𝐸 + 𝑥𝑛+1⟨𝝂𝐸, 𝐞⟩𝐸⟨∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸
+ 𝑥𝑛+1

⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
+𝐻

⟨
∇𝐸𝑓 , 𝝂𝐻

⟩
= 𝑥2

𝑛+1 div𝐸 ∇𝐸𝑓 + 2𝑥𝑛+1
⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
− (𝑛 + 1)𝑥𝑛+1

⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
− 𝑥2

𝑛+1
⟨
∇𝐸
𝝂𝐸
∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸

− 2𝑥𝑛+1⟨𝝂𝐸, 𝐞⟩𝐸⟨∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸
+ 𝑥𝑛+1

⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
+𝐻

⟨
∇𝐸𝑓 , 𝝂𝐻

⟩
𝐸

= 𝑥2
𝑛+1

(
Δ𝐸𝑓 −

⟨
∇𝐸
𝝂𝐸
∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸

)
− 𝑥𝑛+1

(
(𝑛 − 2)

⟨
∇𝐸𝑓 , 𝐞

⟩
𝐸
− 2⟨𝝂𝐸, 𝐞⟩𝐸⟨∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸

)
+𝐻

⟨
∇𝐸𝑓 , 𝝂𝐻

⟩
𝐸
.

Combining this with

𝜕

𝜕𝑡
𝑓 = (𝐻 − 𝜎)𝝂𝐻𝑓 = 𝐻

⟨
∇𝐸𝑓 , 𝝂𝐻

⟩
𝐸
− 𝑥𝑛+1𝜎

⟨
∇𝐸𝑓 , 𝝂𝐸

⟩
𝐸

gives the desired result. □

Now note that the Riemann curvature tensor is(
𝑅𝐻

)
𝛼𝛽𝛾𝛿

=
⟨(

𝑅𝐻
)(
𝐞𝛼, 𝐞𝛽

)
𝐞𝛾 , 𝐞𝛿

⟩
𝐻

= 𝛿𝛼𝛿𝛿𝛽𝛾 − 𝛿𝛼𝛾𝛿𝛽𝛿,

since ℍ𝑛+1 has constant sectional curvature −1. In particular, ∇𝑅𝐻 = 0. Also, the Gauss equation in this setting reads as

Gauss: 𝑅𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑘𝑎𝑗𝑙 − 𝑎𝑖𝑙𝑎𝑗𝑘 +
(
𝑅𝐻

)
𝑖𝑗𝑘𝑙

,
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where the index 0 denotes the 𝝂𝐻 direction. Note also that we have the interchange of two covariant derivatives on a two

tensor:

∇𝑗∇𝑖𝑎𝑘𝑙 = ∇𝑖∇𝑗𝑎𝑘𝑙 + 𝑎𝑘𝑚𝑅
𝑚

𝑗𝑖𝑙
+ 𝑎𝑙𝑚𝑅

𝑚
𝑗𝑖𝑘

,

where 𝑅 𝑚
𝑖𝑗𝑘

= 𝑔𝑚𝑙𝑅𝑖𝑗𝑘𝑙. Using these equations one can derive the following well-known Simons’ identity.

Lemma 2.4. On Σ𝑡 ⊂ ℍ𝑛+1, we have

(i) (Simons’ identity)

Δ𝑎𝑖𝑗 = ∇𝑖∇𝑗𝐻 +𝐻𝑎𝑚𝑖𝑎
𝑚
𝑗
− |𝐴|2𝑎𝑖𝑗 − 𝑛𝑎𝑖𝑗 +𝐻𝛿𝑖𝑗 ,

whereΔ is the Laplacian for tensors onΣ𝑡,∇ the covariant derivative onΣ𝑡,∇𝑖 = ∇𝐯𝑖 and 𝐴 =
(
𝑎𝑖𝑗

)
the second fundamental

form on Σ𝑡, all with respect to the induced hyperbolic metric.
(ii) Δ|𝐴|2 = 2𝑎𝑖𝑗∇𝑖∇𝑗𝐻 + 2𝐻Tr

(
𝐴3) − 2|𝐴|4 − 2𝑛|𝐴|2 + 2𝐻2 + 2|∇𝐴|2.

Proof. We include a proof for the sake of completeness. See also [13] for general ambient manifolds. Fix a point on Σ𝑡. We will

work on a normal coordinate at this point. For (i), we have

Δ𝑎𝑖𝑗 = ∇𝑘∇𝑘𝑎𝑖𝑗 = ∇𝑘∇𝑗𝑎𝑖𝑘

= ∇𝑖∇𝑘𝑎𝑗𝑘 + 𝑎𝑗𝑙𝑅
𝑙

𝑘𝑖𝑘
+ 𝑎𝑘𝑙𝑅

𝑙
𝑘𝑖𝑗

= ∇𝑖∇𝑗𝐻 + 𝑎𝑙
𝑗

(
𝑎𝑘𝑘𝑎𝑖𝑙 − 𝑎𝑘𝑙𝑎𝑖𝑘 +

(
𝑅𝐻

) 𝑙

𝑘𝑖𝑘

)
+ 𝑎𝑘𝑙

(
𝑎𝑘𝑗𝑎𝑖𝑙 − 𝑎𝑘𝑙𝑎𝑖𝑗 +

(
𝑅𝐻

) 𝑙

𝑘𝑖𝑗

)
= ∇𝑖∇𝑗𝐻 +𝐻𝑎𝑖𝑙𝑎

𝑙
𝑗
+ 𝑎𝑗𝑙

(
𝛿𝑘𝑙𝛿𝑖𝑘 − 𝛿𝑘𝑘𝛿𝑖𝑙

)
− |𝐴|2𝑎𝑖𝑗 + 𝑎𝑘𝑙

(
𝛿𝑘𝑙𝛿𝑖𝑗 − 𝛿𝑗𝑘𝛿𝑖𝑙

)
= ∇𝑖∇𝑗𝐻 +𝐻𝑎𝑖𝑙𝑎

𝑙
𝑗
− |𝐴|2𝑎𝑖𝑗 − 𝑛𝑎𝑖𝑗 +𝐻𝛿𝑖𝑗 .

For (ii), we have

Δ|𝐴|2 = 2𝑎𝑖𝑗Δ𝑎𝑖𝑗 + 2|∇𝐴|2
= 2𝑎𝑖𝑗∇𝑖∇𝑗𝐻 + 2𝐻Tr

(
𝐴3) − 2|𝐴|4 − 2𝑛|𝐴|2 + 2𝐻2 + 2|∇𝐴|2. □

In order to obtain the estimates on higher order derivatives, we also need the evolution equation for the second fundamental

forms.

Lemma 2.5. On Σ𝑡 ⊂ ℍ𝑛+1, we have

(i) 𝜕

𝜕𝑡
𝑎𝑖𝑗 = ∇𝑖∇𝑗𝐻 − (𝐻 − 𝜎)𝑎𝑘

𝑖
𝑎𝑗𝑘 + (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0,

(ii) 𝜕

𝜕𝑡
|𝐴|2 = 2𝑎𝑖𝑗∇𝑖∇𝑗𝐻 + 2(𝐻 − 𝜎)Tr

(
𝐴3) − 2𝐻(𝐻 − 𝜎),

(iii)
(

𝜕

𝜕𝑡
− Δ

)|𝐴|2 = 2|𝐴|4 + 2𝑛|𝐴|2 − 2|∇𝐴|2 − 4𝐻2 + 2𝜎
(
𝐻 − Tr

(
𝐴3)).

Proof.

(i) The evolution equation for 𝑎𝑖𝑗 along the mean curvature flow in general Riemannian manifold can be found in [13]. Here,

for completeness, we prove it in our setting. Note that ∇𝐻
𝐯𝑖
𝐯𝑗 = 𝑎𝑖𝑗𝝂𝐻 , we compute

𝜕

𝜕𝑡
𝑎𝑖𝑗 =

⟨
∇𝐻

𝜕

𝜕𝑡

∇𝐻
𝐯𝑖
𝐯𝑗 , 𝝂𝐻

⟩
𝐻

+
⟨
∇𝐻
𝐯𝑖
𝐯𝑗 ,∇𝐻

𝜕

𝜕𝑡

𝝂

⟩
𝐻

=
⟨
∇𝐻
𝐯𝑖
∇𝐻
𝐯𝑗

𝜕

𝜕𝑡
, 𝝂𝐻

⟩
𝐻
+
⟨(

𝑅𝐻
)
(𝐯𝑖, 𝜕∕𝜕𝑡)𝐯𝑗 , 𝝂𝐻

⟩
𝐻
+
⟨
∇𝐻
𝐯𝑖
𝐯𝑗 ,−∇𝐻

⟩
𝐻

=
⟨
∇𝐻
𝐯𝑖
∇𝐻
𝐯𝑗

(
(𝐻 − 𝜎)𝝂𝐻

)
, 𝝂𝐻

⟩
𝐻
+ (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0 − Γ𝑘

𝑖𝑗
𝐯𝑘(𝐻)



ALLMANN ET AL. 7

=
⟨
∇𝐻
𝐯𝑖

(
∇𝐻
𝐯𝑗
𝐻𝝂𝐻

)
− ∇𝐻

𝐯𝑖

(
(𝐻 − 𝜎)𝑎𝑘

𝑗
𝐯𝑘
)
, 𝝂𝐻

⟩
𝐻
+ (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0 − Γ𝑘

𝑖𝑗
𝐯𝑘(𝐻)

= ∇𝐻
𝑖

(
∇𝐻

𝑗
𝐻
)
− (𝐻 − 𝜎)𝑎𝑘

𝑖
𝑎𝑗𝑘 + (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0 − Γ𝑘

𝑖𝑗
𝐯𝑘(𝐻)

= 𝐯𝑖
(
𝐯𝑗(𝐻)

)
− (𝐻 − 𝜎)𝑎𝑘

𝑖
𝑎𝑗𝑘 + (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0 − Γ𝑘

𝑖𝑗
𝐯𝑘(𝐻)

= ∇𝑖∇𝑗𝐻 − (𝐻 − 𝜎)𝑎𝑘
𝑖
𝑎𝑗𝑘 + (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0,

where ∇𝐻 = 𝑔𝑟𝑠𝐯𝑟(𝐻)𝐯𝑠. Suppose {𝑥𝑖} is a local coordinate on 𝕊𝑛
+, then 𝐯𝑖 = 𝐹∗

( 𝜕

𝜕𝑥𝑖

)
and 𝐯𝑖(𝐻) = 𝜕𝐻

𝜕𝑥𝑖

,

𝐯𝑖
(
𝐯𝑗(𝐻)

)
= 𝜕2𝐻

𝜕𝑥𝑖𝜕𝑥𝑗

.

(ii) Notice
𝜕

𝜕𝑡
𝑔𝑖𝑗 = 2(𝐻 − 𝜎)𝑔𝑖𝑘𝑔𝑗𝑙𝑎𝑘𝑙, so that

𝜕

𝜕𝑡
|𝐴|2 = 𝜕

𝜕𝑡

(
𝑔𝑖𝑗𝑔𝑘𝑙𝑎𝑖𝑘𝑎𝑗𝑙

)
=4(𝐻 − 𝜎)𝑎𝑖𝑗𝑎𝑖𝑘𝑎

𝑘
𝑗
+ 2𝑎𝑖𝑗

(
∇𝑖∇𝑗𝐻 − (𝐻 − 𝜎)𝑎𝑖𝑘𝑎

𝑘
𝑗
+ (𝐻 − 𝜎)

(
𝑅𝐻

)
𝑖0𝑗0

)
=2𝑎𝑖𝑗∇𝑖∇𝑗𝐻 + 2(𝐻 − 𝜎)Tr

(
𝐴3) − 2𝐻(𝐻 − 𝜎).

(iii) Combining (ii) with the Simons’ identity.

□

Finally, we note that there is a 𝐶0-estimate that comes for free.

Remark 2.6. Notice |𝑥|𝐸 is bounded above on any compact region ofΣ𝑡, by the same constant, for all time. To see this, there exist,

for any 𝑟 > 0, caps
{(

𝑥1,… , 𝑥𝑛+1
)
∈ ℍ𝑛+1 ∶

(
𝑥1
)2 +⋯ +

(
𝑥𝑛

)2 + (
𝑥𝑛+1 + 𝜎𝑟∕𝑛

)2 = 𝑟2
}

, with constant hyperbolic mean cur-

vature 𝜎. These caps have bounded |𝑥|𝐸 . The result follows from a comparison principle for MMCF. That is, the ratio of the

Euclidean radial height above a fixed point in 𝜕∞ℍ𝑛+1 between two hypersurfaces (with one compact) moving by MMCF in

hyperbolic space is non-decreasing in time.

3 INTERIOR GRADIENT ESTIMATES

The MMCF (1.1) for complete radial graphs is a (degenerate) quasi-linear parabolic PDE, see (1.4). We would like to use the con-

ventional maximum principle techniques to obtain interior estimates. Similar interior estimates were obtained in [15, Section 9]

using the same techniques. However, the estimate there is not uniform in 𝜖 and therefore it is not sufficient in our current case. In

order to overcome the degeneracy at infinity of the PDE and achieve the uniform interior estimate, we first need to find an appro-

priate space-time cut-off function. To do so, we let 𝑟(𝑥) be the hyperbolic distance from a point 𝑥 ∈ ℍ𝑛+1 to the 𝑥𝑛+1-axis. Then

cosh 𝑟 =
|𝑥|𝐸
𝑥𝑛+1

,

where |𝑥|𝐸 =
√⟨𝑥, 𝑥⟩𝐸 , see e.g. [3, Cor. A.5.8.]. In the following, we let 𝐳 = 𝑥|𝑥|𝐸 .

Proposition 3.1. (
𝜕

𝜕𝑡
− Δ

)
cosh 𝑟 = 1

cosh 𝑟

(
1 − ⟨𝝂𝐸, 𝐳⟩2

𝐸

)
−
(
𝑛 − 𝜎⟨𝝂𝐸, 𝐞⟩𝐸) cosh 𝑟 − 𝜎⟨𝝂𝐸, 𝐳⟩𝐸.

Proof. Notice

∇𝐸|𝑥|𝐸 = 𝐳,

∇𝐸
𝝂𝐸
∇𝐸|𝑥|𝐸 = ∇𝐸

𝝂𝐸
𝐳 = 𝝂𝐸|𝑥|−1𝐸

𝑥 + |𝑥|−1
𝐸
𝝂𝐸 = −|𝑥|−1

𝐸
⟨𝐳, 𝝂𝐸⟩𝐸𝐳 + |𝑥|−1

𝐸
𝝂𝐸,

Δ𝐸|𝑥|𝐸 = div𝐸 𝐳 = −|𝑥|−1
𝐸

+ |𝑥|−1
𝐸
(𝑛 + 1) = 𝑛|𝑥|−1

𝐸
.
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Moreover, we have

∇𝐸𝑥−1
𝑛+1 = −𝑥−2

𝑛+1𝐞,

∇𝐸
𝝂𝐸
∇𝐸𝑥−1

𝑛+1 = 2𝑥−3
𝑛+1⟨𝐞, 𝝂𝐸⟩𝐸𝐞,

Δ𝐸𝑥−1
𝑛+1 = 2𝑥−3

𝑛+1,

∇𝐸 cosh 𝑟 = 𝑥−1
𝑛+1𝐳 − 𝑥−2

𝑛+1|𝑥|𝐸𝐞 = 𝑥−1
𝑛+1𝐳 − 𝑥−1

𝑛+1(cosh 𝑟)𝐞,

𝑥𝑛+1∇𝐸 cosh 𝑟 = 𝐳 − (cosh 𝑟)𝐞,

and

∇𝐸
𝝂𝐸
∇𝐸 cosh 𝑟 =∇𝐸

𝝂𝐸

(
𝑥−1
𝑛+1𝐳 − 𝑥−1

𝑛+1(cosh 𝑟)𝐞
)

= − 𝑥−2
𝑛+1⟨𝝂𝐸, 𝐞⟩𝐸𝐳 + 𝑥−1

𝑛+1
(
− |𝑥|−1

𝐸
⟨𝐳, 𝝂𝐸⟩𝐸𝐳 + |𝑥|−1

𝐸
𝝂𝐸

)
+ 𝑥−2

𝑛+1⟨𝝂𝐸, 𝐞⟩𝐸(cosh 𝑟)𝐞

− 𝑥−1
𝑛+1

⟨
𝑥−1
𝑛+1𝐳 − 𝑥−1

𝑛+1(cosh 𝑟)𝐞, 𝝂𝐸

⟩
𝐸

= 𝑥−2
𝑛+1

(
− ⟨𝐞, 𝝂𝐸⟩𝐸𝐳 − 1

cosh 𝑟
⟨𝐳, 𝝂𝐸⟩𝐸𝐳 + 1

cosh 𝑟
𝝂𝐸 − ⟨𝐳, 𝝂𝐸⟩𝐸𝐞 + 2 cosh 𝑟⟨𝐞, 𝝂𝐸⟩𝐸𝐞).

Now, since ⟨𝐳, 𝐞⟩𝐸 = 1
cosh 𝑟

, we have

Δ𝐸 cosh 𝑟 =Δ𝐸𝑥−1
𝑛+1|𝑥|𝐸

=2
⟨
∇𝐸𝑥−1

𝑛+1,∇
𝐸|𝑥|𝐸⟩𝐸

+ 𝑥−1
𝑛+1Δ𝐸|𝑥|𝐸 + |𝑥|𝐸Δ𝐸𝑥−1

𝑛+1

= 𝑥−2
𝑛+1

(
(𝑛 − 2) 1

cosh 𝑟
+ 2 cosh 𝑟

)
.

Therefore, we finally arrive at(
𝜕

𝜕𝑡
− Δ

)
cosh 𝑟 = − 𝑥2

𝑛+1
(
Δ𝐸 cosh 𝑟 −

⟨
∇𝐸
𝝂𝐸
∇𝐸 cosh 𝑟, 𝝂𝐸

⟩
𝐸

)
+ 𝑥𝑛+1

[
(𝑛 − 2)

⟨
∇𝐸 cosh 𝑟, 𝐞

⟩
𝐸
+ 2

⟨
∇𝐸 cosh 𝑟, 𝝂𝐸

⟩
𝐸
⟨𝐞, 𝝂𝐸⟩𝐸 − 𝜎

⟨
∇𝐸 cosh 𝑟, 𝝂𝐸

⟩
𝐸

]
= (2 − 𝑛)⟨𝐳, 𝐞⟩𝐸 − 2 cosh 𝑟 − 1

cosh 𝑟
⟨𝐳, 𝝂𝐸⟩2𝐸 + 1

cosh 𝑟
− 2⟨𝐳, 𝝂𝐸⟩𝐸⟨𝐞, 𝝂𝐸⟩𝐸 + 2 cosh 𝑟⟨𝐞, 𝝂𝐸⟩2𝐸

+ (𝑛 − 2)⟨𝐳, 𝐞⟩𝐸 − (𝑛 − 2) cosh 𝑟 + 2⟨𝐳, 𝝂𝐸⟩𝐸⟨𝐞, 𝝂𝐸⟩𝐸
− 2 cosh 𝑟⟨𝐞, 𝝂𝐸⟩2𝐸 − 𝜎⟨𝐳, 𝝂𝐸⟩𝐸 + 𝜎 cosh 𝑟⟨𝐞, 𝝂𝐸⟩𝐸

= 1
cosh 𝑟

(
1 − ⟨𝝂𝐸, 𝐳⟩2

𝐸

)
−
(
𝑛 − 𝜎⟨𝐞, 𝝂𝐸⟩𝐸) cosh 𝑟 − 𝜎⟨𝐳, 𝝂𝐸⟩𝐸.

□

Now, for any 𝑅 > 0, we define a space-time cut-off function (c.f. [19])

𝜂 = cosh𝑅 − 𝑒(𝑛+𝜎)𝑡
(
cosh 𝑟 + 𝜎

𝑛 + 𝜎

)
.

Then, for 𝜎 ≥ 0 we have(
𝜕

𝜕𝑡
− Δ

)
𝜂 = − 𝑒(𝑛+𝜎)𝑡

(
(𝑛 + 𝜎) cosh 𝑟 + 𝜎 +

(
𝜕

𝜕𝑡
− Δ

)
cosh 𝑟

)
= − 𝑒(𝑛+𝜎)𝑡

[
(𝑛 + 𝜎) cosh 𝑟 + 𝜎 + 1

cosh 𝑟

(
1 − ⟨𝝂𝐸, 𝐳⟩2

𝐸

)
−
(
𝑛 − 𝜎⟨𝐞, 𝝂𝐸⟩𝐸) cosh 𝑟 − 𝜎⟨𝐳, 𝝂𝐸⟩𝐸]
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= − 𝑒(𝑛+𝜎)𝑡
[ 1
cosh 𝑟

(
1 − ⟨𝝂𝐸, 𝐳⟩2

𝐸

)
+ 𝜎

(
1 − ⟨𝐳, 𝝂𝐸⟩𝐸 + cosh 𝑟

(
1 + ⟨𝐞, 𝝂𝐸⟩𝐸))] ≤ 0.

Remark 3.2. We will only deal with the case of 𝜎 ≥ 0. The case of 𝜎 < 0 can be handled using the hyperbolic isometric reflection

𝑥∗ = 𝑥|𝑥|2
𝐸

w.r.t. 𝕊𝑛
+.

Remark 3.3. Notice that

𝝂𝐸 = 𝐳 − ∇𝑣√
1 + |∇𝑣|2 and ⟨𝝂𝐸, 𝐳⟩𝐸 = 1|𝑥|𝐸 ⟨𝝂𝐸, 𝑥⟩𝐸 = 1√

1 + |∇𝑣|2 .
Therefore, in order to get the interior gradient estimate on |∇𝑣|, we will need to get a positive lower bound on ⟨𝝂𝐸, 𝐳⟩𝐸 , which is

(almost) equivalent to ⟨𝝂𝐸, 𝑥⟩𝐸 = 𝑥𝑛+1⟨𝝂𝐻, 𝑥⟩𝐻 , thanks to the 𝐶0-estimate on |𝑥|𝐸 using appropriate barriers (see Remark 2.6).

Thus, in the following we will first look at the evolution equation of ⟨𝝂𝐻, 𝑥⟩𝐻 and finally arrive at the evolution equation of⟨𝝂𝐸, 𝑥⟩𝐸 (see Proposition 3.5). Then the cut-off function and maximum principle techniques apply conventionally.

From here on suppose the 𝐯𝑖’s are in fact a normal coordinate basis of 𝑇𝑝Σ𝑡 with respect to the hyperbolic metric. We may

extend the vector fields 𝐯𝑖 and 𝝂𝐻 on Σ𝑡 to a neighborhood of ℍ𝑛+1 by requiring that 𝐯𝑖 is constant along the integral curves of

𝑥, so that [𝐯𝑖, 𝑥] = [𝝂𝐻, 𝑥] = 0, where, e.g., [𝐯𝑖, 𝑥] is the Lie bracket of 𝐯𝑖 and 𝑥. See, e.g., [2]. Note that the Codazzi equation

becomes, since ℍ𝑛+1 has constant sectional curvature,

𝑎𝑖𝑗,𝑘 = 𝑎𝑖𝑘,𝑗 . (3.1)

Proposition 3.4. For radial graphs moving by MMCF,(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐻, 𝑥⟩𝐻 =
(|𝐴|2 − 𝑛

)⟨𝝂𝐻, 𝑥⟩𝐻,

where |𝐴|2 = 𝑔𝑖𝑗𝑔𝑘𝑙𝑎𝑖𝑘𝑎𝑗𝑙 is the norm squared of the second fundamental form on Σ𝑡.

Proof. We have, using [𝐯𝑖, 𝑥] = 0, (2.1), and Codazzi equation (3.1), and summing over repeated indices,

Δ⟨𝝂𝐻, 𝑥⟩𝐻 = 𝐯𝑖𝐯𝑖⟨𝝂𝐻, 𝑥⟩𝐻 = 𝐯𝑖
⟨
∇𝐻
𝐯𝑖
𝝂𝐻, 𝑥

⟩
𝐻
+ 𝐯𝑖

⟨
𝝂𝐻,∇𝐻

𝐯𝑖
𝑥
⟩
𝐻

= −
⟨
∇𝐻
𝐯𝑖
𝑎𝑖𝑗𝐯𝑗 , 𝑥

⟩
𝐻
− |𝐴|2⟨𝝂𝐻, 𝑥⟩𝐻 − 2

⟨
𝑎𝑖𝑗𝐯𝑗 ,∇𝐻

𝐯𝑖
𝑥
⟩
𝐻

+
⟨
𝝂𝐻,

(
𝑅𝐻

)
(𝑥, 𝐯𝑖)𝐯𝑖

⟩
𝐻
+
⟨
𝝂𝐻,∇𝐻

𝑥
∇𝐻
𝐯𝑖
𝐯𝑖
⟩
𝐻

= − 𝐯𝑗(𝐻)⟨𝐯𝑗 , 𝑥⟩𝐻 +
⟨(

𝑅𝐻
)
(𝑥, 𝐯𝑖)𝐯𝑖, 𝝂𝐻

⟩
𝐻
− |𝐴|2⟨𝝂𝐻, 𝑥⟩𝐻 + 𝑎𝑖𝑗𝑥𝑔

𝑖𝑗 + 𝑥𝑎𝑖𝑖

= − ⟨∇𝐻,𝑥⟩𝐻 − Ric𝐻 (𝝂𝐻, 𝝂𝐻 )⟨𝝂𝐻, 𝑥⟩𝐻 − |𝐴|2⟨𝝂𝐻, 𝑥⟩𝐻 + 𝑥(𝐻)

=
(
𝑛 − |𝐴|2)⟨𝝂𝐻, 𝑥⟩𝐻 − ⟨∇𝐻,𝑥⟩𝐻 + 𝑥(𝐻).

Notice ∇𝐻
𝜕

𝜕𝑡

𝝂𝐻 is tangential, and
[

𝜕

𝜕𝑡
, 𝐯𝑖

]
= 0 from the naturality of the Lie bracket. So,

⟨
∇𝐻

𝜕

𝜕𝑡

𝝂𝐻, 𝐯𝑖
⟩

𝐻

= −
⟨
𝝂𝐻,∇𝐻

𝐯𝑖
𝜕

𝜕𝑡

⟩
𝐻

= −𝐯𝑖(𝐻 − 𝜎) − (𝐻 − 𝜎)
⟨
𝝂𝐻,∇𝐻

𝐯𝑖
𝝂𝐻

⟩
𝐻

= −𝐯𝑖𝐻,

which implies

∇𝐻
𝜕

𝜕𝑡

𝝂𝐻 = −∇𝐻.

Also,

⟨
𝝂𝐻,∇𝐻

𝝂𝐻
𝑥
⟩
𝐻

=
⟨
𝝂𝐸,∇𝐸

𝝂𝐸
𝑥 + 1

𝑥𝑛+1

(⟨𝝂𝐸, 𝑥⟩𝐸 𝐞 − ⟨𝝂𝐸, 𝐞⟩𝐸𝑥 − ⟨𝑥, 𝐞⟩𝐸𝝂𝐸

)⟩
𝐸

= 0
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since ∇𝐸
𝝂𝐸

𝑥 = 𝝂𝐸 and ⟨𝑥, 𝐞⟩𝐸 = 𝑥𝑛+1. Hence,

𝜕

𝜕𝑡
⟨𝝂𝐻, 𝑥⟩𝐻 =

⟨
∇𝐻

𝜕

𝜕𝑡

𝝂𝐻, 𝑥

⟩
𝐻

+ (𝐻 − 𝜎)
⟨
𝝂𝐻,∇𝐻

𝝂𝐻
𝑥

⟩
𝐻

= −⟨∇𝐻,𝑥⟩𝐻.

Finally, notice that 𝑥(𝐻) = 0 since 𝑥 is a Killing vector field in ℍ𝑛+1, c.f. [10, Appendix]. □

Proposition 3.5. For radial graphs moving by MMCF,(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐸, 𝑥⟩𝐸 =
(|𝐴|2 − 𝜎⟨𝝂𝐸, 𝐞⟩𝐸)⟨𝝂𝐸, 𝑥⟩𝐸 − 2⟨∇⟨𝝂𝐸, 𝑥⟩𝐸, 𝑥𝑛+1𝐞⟩𝐻. (3.2)

Remark 3.6. In the case of MCF, i.e., 𝜎 = 0, Equation (3.2) and the maximum principle yield immediately a global

gradient bound for the approximate MCF (starting from the compact hypersurface Σ𝜖
0), which ensures the global exis-

tence of the approximate MCF, see [19]. On the other hand, in the case 𝜎 ≠ 0, the maximum principle is not applicable

directly, but thanks to the existence result from [15] for the approximate MMCF we are able to get around with this, see

Section 5.

Proof. We have, using ∇𝑥𝑛+1 = ∇𝐻𝑥𝑛+1 −
⟨
∇𝐻𝑥𝑛+1, 𝝂𝐻

⟩
𝐻
𝝂𝐻 = 𝑥2

𝑛+1
(
𝐞 − ⟨𝝂𝐸, 𝐞⟩𝐸𝝂𝐸

)
, that

|∇𝑥𝑛+1|2𝐻 = 𝑥2
𝑛+1

(
1 − ⟨𝝂𝐸, 𝐞⟩2

𝐸

)
.

Hence, using Proposition 2.3, we have(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐸, 𝑥⟩𝐸 =
(

𝜕

𝜕𝑡
− Δ

)(
𝑥𝑛+1⟨𝝂𝐻, 𝑥⟩𝐻)

= 𝑥𝑛+1

(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐻, 𝑥⟩𝐻 + ⟨𝝂𝐻, 𝑥⟩𝐻(
𝜕

𝜕𝑡
− Δ

)
𝑥𝑛+1 − 2

⟨
∇𝑥𝑛+1,∇⟨𝜈𝐻, 𝑥⟩

𝐻

⟩
𝐻

=
(|𝐴|2 − 𝑛

)⟨𝝂𝐸, 𝑥⟩𝐸 + ⟨𝝂𝐸, 𝑥⟩𝐸(𝑛 − 2 + 2⟨𝝂𝐸, 𝐞⟩2
𝐸
− 𝜎⟨𝝂𝐸, 𝐞⟩𝐸)

− 2
⟨
∇𝑥𝑛+1,

1
𝑥𝑛+1

∇⟨𝝂𝐸, 𝑥⟩𝐸⟩
𝐻

− 2
⟨
∇𝑥𝑛+1, ⟨𝝂𝐸, 𝑥⟩𝐸∇ 1

𝑥𝑛+1

⟩
𝐻

=
(|𝐴|2 − 2 + 2⟨𝝂𝐸, 𝐞⟩2

𝐸
− 𝜎⟨𝝂𝐸, 𝐞⟩𝐸)⟨𝝂𝐸, 𝑥⟩𝐸

− 2
⟨
𝑥𝑛+1𝐞,∇⟨𝝂𝐸, 𝑥⟩𝐸⟩𝐻

+ 2⟨𝝂𝐸, 𝑥⟩𝐸(1 − ⟨𝝂𝐸, 𝐞⟩2
𝐸

)
=
(|𝐴|2 − 𝜎⟨𝝂𝐸, 𝐞⟩𝐸)⟨𝝂𝐸, 𝑥⟩𝐸 − 2⟨∇⟨𝝂𝐸, 𝑥⟩𝐸, 𝑥𝑛+1𝐞⟩𝐻. □

Now, in order to obtain the interior estimate using maximum principle techniques, we multiply ⟨𝝂𝐸, 𝑥⟩−1
𝐸

by the space-time

cut-off function and let

𝜉 = 𝜂3⟨𝝂𝐸, 𝑥⟩−1
𝐸

=
(
cosh𝑅 − 𝑒(𝑛+𝜎)𝑡

(
cosh 𝑟 + 𝜎

𝑛 + 𝜎

))3⟨𝝂𝐸, 𝑥⟩−1
𝐸

. (3.3)

Proposition 3.7. For radial graphs moving by MMCF with 𝜎 ∈ [0, 𝑛),(
𝜕

𝜕𝑡
− Δ

)
𝜉 ≤ (𝑛 + 2)𝜉.

Proof. This is a straight-forward calculation.(
𝜕

𝜕𝑡
− Δ

)
𝜉 = ⟨𝝂𝐸, 𝑥⟩−1

𝐸

(
𝜕

𝜕𝑡
− Δ

)
𝜂3 + 𝜂3

(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐸, 𝑥⟩−1
𝐸

− 2
⟨
∇𝜂3,∇⟨𝝂𝐸, 𝑥⟩−1

𝐸

⟩
𝐻

=3𝜂2⟨𝝂𝐸, 𝑥⟩−1
𝐸

(
𝜕

𝜕𝑡
− Δ

)
𝜂 − 6𝜂⟨𝝂𝐸, 𝑥⟩−1

𝐸
|∇𝜂|2

𝐻
− 𝜂3⟨𝝂𝐸, 𝑥⟩−2

𝐸

(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐸, 𝑥⟩𝐸
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− 2𝜂3⟨𝝂𝐸, 𝑥⟩−3
𝐸
|∇⟨𝝂𝐸, 𝑥⟩𝐸|2𝐻 + 6𝜂2⟨𝝂𝐸, 𝑥⟩−2

𝐸

⟨
∇𝜂,∇⟨𝝂𝐸, 𝑥⟩𝐸⟩𝐻

≤ − 𝜂3⟨𝝂𝐸, 𝑥⟩−2
𝐸

((|𝐴|2 − 𝜎⟨𝝂𝐸, 𝐞⟩𝐸)⟨𝝂𝐸, 𝑥⟩𝐸 − 2⟨∇⟨𝝂𝐸, 𝑥⟩𝐸, 𝑥𝑛+1𝐞⟩𝐻)
− 1

2
𝜂3⟨𝝂𝐸, 𝑥⟩−3

𝐸
|∇⟨𝝂𝐸, 𝑥⟩𝐸|2𝐻

≤ 𝜂3⟨𝝂𝐸, 𝑥⟩−1
𝐸

(⟨𝝂𝐸, 𝐞⟩𝐸𝜎 − |𝐴|2 + 2
)
≤ (𝑛 + 2)𝜉,

where we have used

2𝜂3⟨𝝂𝐸, 𝑥⟩−2
𝐸
⟨∇⟨𝝂𝐸, 𝑥⟩𝐸, 𝑥𝑛+1𝐞⟩𝐻 ≤

1
2
𝜂3⟨𝝂𝐸, 𝑥⟩−3

𝐸
|∇⟨𝝂𝐸, 𝑥⟩𝐸|2𝐻 + 2𝜂3⟨𝝂𝐸, 𝑥⟩−1

𝐸
,

and

6𝜂2⟨𝝂𝐸, 𝑥⟩−2
𝐸

⟨
∇𝜂,∇⟨𝝂𝐸, 𝑥⟩𝐸⟩𝐻

≤ 6𝜂⟨𝝂𝐸, 𝑥⟩−1
𝐸
|∇𝜂|2

𝐻
+ 3

2
𝜂3⟨𝝂𝐸, 𝑥⟩−3

𝐸
|∇⟨𝝂𝐸, 𝑥⟩𝐸|2𝐻,

from Young’s inequality. □

The following theorem is the main technical interior gradient estimate.

Theorem 3.8. For any 𝑅 ≥ cosh−1
(

𝜎

𝑛+𝜎
𝑒(𝑛+𝜎)𝑇

)
and 𝜃 ∈

(
𝜎

(𝑛+𝜎) cosh𝑅
𝑒(𝑛+𝜎)𝑇 , 1

)
such that {𝑥 ∈ Σ𝑡 ∣ 𝑟 ≤ 𝑅} is a compact

radial graph for all 𝑡 ∈ [0, 𝑇 ], we have

sup
{𝑥∈Σ𝑡∣𝑒(𝑛+𝜎)𝑡(cosh 𝑟+ 𝜎

𝑛+𝜎
)≤𝜃 cosh𝑅}

⟨𝝂𝐸, 𝐳⟩−1
𝐸

≤ 𝑒(𝑛+2)𝑇+𝑣osc(1 − 𝜃)−3 sup
{𝑥∈Σ0∣𝑟≤𝑅}

⟨𝝂𝐸, 𝐳⟩−1
𝐸

,

where 𝑣osc = max{𝑥∈Σ𝑡|𝑟≤𝑅}×[0,𝑇 ] 𝑣 − min{𝑥∈Σ𝑡|𝑟≤𝑅}×[0,𝑇 ] 𝑣 is the oscillation of the radial height of 𝑥 (see (1.2)) in
{𝑥 ∈ Σ𝑡 ∣ 𝑟 ≤ 𝑅} × [0, 𝑇 ].

Proof. The previous proposition and Hamilton’s trick imply, for almost all 𝑡 ∈ (0, 𝑇 ),

𝑑

𝑑𝑡
sup

{𝑥∈Σ𝑡∣𝑟≤𝑅}
𝜉 ≤ (𝑛 + 2) sup

{𝑥∈Σ𝑡∣𝑟≤𝑅}
𝜉,

so we may integrate from 0 to 𝑇 to obtain

sup
{𝑥∈Σ𝑇 ∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝑥⟩−1
𝐸

≤ 𝑒(𝑛+2)𝑇 sup
{𝑥∈Σ0∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝑥⟩−1
𝐸

.

Now notice 𝑒𝑣min ≤ |𝑥|𝐸 implies

𝑒(𝑛+2)𝑇−𝑣min sup
{𝑥∈Σ0∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝐳⟩−1
𝐸

≥ 𝑒(𝑛+2)𝑇 sup
{𝑥∈Σ0∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝑥⟩−1
𝐸

.

Similarly, 𝑒𝑣max ≥ |𝑥|𝐸 implies

𝑒−𝑣max sup
{𝑥∈Σ𝑇 ∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝐳⟩−1
𝐸

≤ sup
{𝑥∈Σ𝑇 ∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝑥⟩−1
𝐸

.

These two inequalities imply then

sup
{𝑥∈Σ𝑇 ∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝐳⟩−1
𝐸

≤ 𝑒(𝑛+2)𝑇+𝑣max−𝑣min sup
{𝑥∈Σ0∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝐳⟩−1
𝐸

.

We also have

sup
{𝑥∈Σ𝑇 ∣𝑒(𝑛+𝜎)𝑡(cosh 𝑟+ 𝜎

𝑛+𝜎
)≤𝜃 cosh𝑅}

𝜂3⟨𝝂𝐸, 𝐳⟩−1
𝐸

≤ sup
{𝑥∈Σ𝑇 ∣𝑟≤𝑅}

𝜂3⟨𝝂𝐸, 𝐳⟩−1
𝐸

,

and 𝜂3 ≥ (1 − 𝜃)3 cosh3 𝑅 in
{
𝑥 ∈ Σ𝑡 ∣ 𝑒(𝑛+𝜎)𝑡( cosh 𝑟 + 𝜎

𝑛+𝜎

)
≤ 𝜃 cosh𝑅

}
since 𝜃 cosh𝑅 + 𝜂 ≥ cosh𝑅 there. We also have

𝜂3 ≤ cosh3 𝑅 everywhere. These facts, along with replacing 𝑇 with any 𝑡 ∈ [0, 𝑇 ), imply the result. □
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4 INTERIOR ESTIMATES ON HIGHER ORDER DERIVATIVES

4.1 Estimates on the second derivatives
Now let 𝑢 = ⟨𝝂𝐸, 𝑥⟩−1

𝐸
and define

𝜑 = 𝜑
(
𝑢2
)
= 𝑢2

1 − 𝑘𝑢2

where

𝑘 =

(
2 sup

𝑡∈[0,𝑇 ]
sup

{𝑥∈Σ𝑡|𝑟≤𝑅}
𝑢2

)−1

.

Let 𝜑′ denote differentiation of 𝜑 with respect to 𝑢2. From Remark 2.6, we know that

𝑐0 ≤ |𝑥|−2
𝐸

≤ 𝜑

for some constant 𝑐0 depending on Σ0.

Combining Proposition 3.5 with (iii) of Lemma 2.5, we obtain:

Lemma 4.1. On {𝑥 ∈ Σ𝑡 | 𝑟 ≤ 𝑅} and Σ𝑡 moves by MMCF, we have(
𝜕

𝜕𝑡
− Δ

)(|𝐴|2𝜑) ≤ −𝑘|𝐴|4𝜑2 +
(

𝑐(𝑛, 𝑐0)
𝑘

− 𝑘𝜑′|∇𝑣|2)|𝐴|2𝜑 − 𝜑−1⟨∇𝜑,∇
(|𝐴|2𝜑)⟩

𝐻
+ 𝜎2𝜑.

Proof. We have (
𝜕

𝜕𝑡
− Δ

)(|𝐴|2𝜑) = 𝜑

(
𝜕

𝜕𝑡
− Δ

)|𝐴|2 + |𝐴|2( 𝜕

𝜕𝑡
− Δ

)
𝜑 − 2

⟨
∇|𝐴|2,∇𝜑

⟩
𝐻

∶= I + II + III.

By (iii) of Lemma 2.5, we have

I = 𝜑
(
2|𝐴|4 + 2𝑛|𝐴|2 − 2|∇𝐴|2 − 4𝐻2 + 2𝜎

(
𝐻 − Tr

(
𝐴3)))

≤ 𝜑

(
2|𝐴|4 + 2𝑛|𝐴|2 − 2|∇𝐴|2 − 4𝐻2 + 𝜎

(
𝐻2𝑐2 +

1
𝑐2

+ |𝐴|2
𝑐1

+ 𝑐1|𝐴|4))
≤ 𝜑(2 + 𝑐1𝜎)|𝐴|4 + 𝜑

(
2𝑛 + 𝜎

𝑐1

)|𝐴|2 − 2𝜑|∇𝐴|2 + 𝜎

𝑐2
𝜑

where we used Young’s inequality and the fact that ||Tr
(
𝐴3)|| ≤ |𝐴|3. We also chose constants 𝑐1, 𝑐2 such that 𝑐1𝜎 ≤ 𝑐0𝑘 and

𝑐2𝜎 ≤ 4, where 𝑐0 ≤ 𝜑.

For the second term II, by Proposition 3.5 we have(
𝜕

𝜕𝑡
− Δ

)
𝜑 = −2𝜑′𝑢3

(
𝜕

𝜕𝑡
− Δ

)⟨𝝂𝐸, 𝑥⟩𝐸 − 6𝜑′|∇𝑢|2 − 4𝜑′′𝑢2|∇𝑢|2
= −2𝜑′𝑢2

(|𝐴|2 − 𝜎⟨𝝂𝐸, 𝐞⟩𝐸) − 4𝜑′𝑢⟨∇𝑢, 𝑥𝑛+1𝐞⟩𝐻 − (6 + 8𝑘𝜑)𝜑′|∇𝑢|2
since 𝜑′′𝑢2 = 2𝑘𝜑𝜑′.

Therefore, using Young’s inequality again we get

II ≤ −2𝑢2𝜑′|𝐴|4 − (6 + 8𝑘𝜑)𝜑′|𝐴|2|∇𝑢|2 + 𝑘𝜑𝜑′|𝐴|2|∇𝑢|2 + 4
𝑐0𝑘

|𝐴|2𝜑 + 4𝑛|𝐴|2𝜑,

since 𝜎 < 𝑛, 𝜑′𝑢2 ≤ 2𝜑 and
𝜑

𝑐0
≥ 1.
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For the third term III, we compute:

III = −𝜑−1⟨∇𝜑,∇
(|𝐴|2𝜑)⟩

𝐻
+ 𝜑−1|𝐴|2|∇𝜑|2 − ⟨

∇|𝐴|2,∇𝜑
⟩
𝐻

= −𝜑−1⟨∇𝜑,∇
(|𝐴|2𝜑)⟩

𝐻
+ 4𝜑−1(𝜑′𝑢)2|𝐴|2|∇𝑢|2 − 4𝜑′𝑢|𝐴|⟨∇|𝐴|,∇𝑢⟩𝐻

≤ −𝜑−1⟨∇𝜑,∇
(|𝐴|2𝜑)⟩

𝐻
+ 6𝜑−1(𝜑′𝑢)2|𝐴|2|∇𝑢|2 + 2|∇|𝐴||2𝜑.

From Kato’s inequality, |∇|𝐴||2 ≤ |∇𝐴|2, so that

I + II + III ≤
(
𝜑(2 + 𝑐1𝜎) − 2𝑢2𝜑′)|𝐴|4 +(

6𝑛 + 𝜎

𝑐1
+ 4

𝑐0𝑘

)|𝐴|2𝜑 + 𝜎

𝑐2
𝜑

+
(
6𝜑−1(𝜑′𝑢)2 − (6 + 7𝑘𝜑)𝜑′)|𝐴|2|∇𝑢|2 − 𝜑−1⟨∇𝜑,∇

(|𝐴|2𝜑)⟩
𝐻
.

Note that since 𝑐1𝜎 ≤ 𝑐0𝑘 and 𝜑 − 𝑢2𝜑′ = −𝑘𝜑2, we have 𝜑(2 + 𝑐1𝜎) − 2𝑢2𝜑′ ≤ −𝑘𝜑2. Moreover,

6𝜑−1(𝜑′𝑢)2 − (6 + 7𝑘𝜑)𝜑′ = −𝑘𝜑𝜑′.

Now let 𝑐1 =
𝑐0𝑘
𝜎

and 𝑐2 =
1
𝜎

, then 6𝑛 + 𝜎

𝑐1
+ 4

𝑐0𝑘
≤

𝑐(𝑛,𝑐0)
𝑘

and on
{
𝑥 ∈ Σ𝑡 | 𝑟 ≤ 𝑅

}
∩
{|𝐴|2 ≥ 1

}
, we have

I + II + III ≤ −𝑘|𝐴|4𝜑2 +
(

𝑐(𝑛, 𝑐0)
𝑘

− 𝑘𝜑′|∇𝑢|2)|𝐴|2𝜑 − 𝜑−1⟨∇𝜑,∇
(|𝐴|2𝜑)⟩

𝐻
+ 𝜎2𝜑.

This proves the lemma. □

Now we are ready to show the interior estimates on the second fundamental form |𝐴| (i.e., |∇2𝑣|). For simplicity, let

𝑔 = |𝐴|2𝜑.

Then the previous lemma says(
𝜕

𝜕𝑡
− Δ

)
𝑔 ≤ −𝑘𝑔2 +

(
𝑐(𝑛, 𝑐0)

𝑘
− 𝑘𝜑′|∇𝑢|2)𝑔 − 𝜑−1⟨∇𝜑,∇𝑔⟩𝐻 + 𝜎2𝜑.

Now let

𝜂 = (cosh𝑅 − cosh 𝑟)2

be the spacial cut-off function, and let 𝜂′ denote the differentiation with respect to cosh 𝑟. Then, from Proposition 3.1, we have(
𝜕

𝜕𝑡
− Δ

)
(− cosh 𝑟) = −

[ 1
cosh 𝑟

(
1 − ⟨𝝂𝐸, 𝐳⟩2

𝐸

)
− (𝑛 − 𝜎⟨𝝂𝐸, 𝐞⟩𝐸) cosh 𝑟 − 𝜎⟨𝝂𝐸, 𝐳⟩𝐸]

≤ (𝜎 + 𝑛) cosh 𝑟 + 𝜎.

So that (
𝜕

𝜕𝑡
− Δ

)
𝜂 =2(cosh𝑅 − cosh 𝑟)

(
𝜕

𝜕𝑡
− Δ

)
(− cosh 𝑟) − 2|∇cosh 𝑟|2

≤ 2(𝜎 + 𝑛) cosh2 𝑅 + 2𝜎 cosh𝑅 − 2|∇cosh 𝑟|2
≤ 2(2𝜎 + 𝑛) cosh2 𝑅 − 2|∇cosh 𝑟|2,

if 𝜎 ≤ cosh𝑅, namely, 𝑅 is sufficiently large, e.g., cosh𝑅 ≥ 𝑛.

Therefore, we compute:(
𝜕

𝜕𝑡
− Δ

)
(𝑔𝜂) ≤

[
−𝑘𝑔2 +

(
𝑐(𝑛, 𝑐0)

𝑘
− 𝑘𝜑′|∇𝑢|2)𝑔 − 𝜑−1⟨∇𝜑,∇𝑔⟩𝐻 + 𝜎2𝜑

]
𝜂
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+ 𝑔

(
𝜕

𝜕𝑡
− Δ

)
𝜂 − 2⟨∇𝑔,∇𝜂⟩

≤ − 𝑘𝑔2𝜂 +
(

𝑐(𝑛, 𝑐0)
𝑘

)
𝑔𝜂 − 𝜑−1⟨∇𝜑,∇(𝑔𝜂)⟩𝐻 + |𝜂′|2𝑔

𝑘𝜂𝑢2
|∇cosh 𝑟|2

+ 𝜎2𝜑𝜂 + 𝑔

(
𝜕

𝜕𝑡
− Δ

)
𝜂 − 2𝜂−1⟨∇(𝑔𝜂),∇𝜂⟩ + 2𝜂−1𝑔|∇𝜂|2

≤ − 𝑘𝑔2𝜂 +
(

𝑐(𝑛, 𝑐0)
𝑘

)
𝑔𝜂 −

⟨
𝜑−1∇𝜑 + 2𝜂−1∇𝜂,∇(𝑔𝜂)

⟩
𝐻

+ 𝜎2𝜑𝜂 + 𝑔
(
2(2𝜎 + 𝑛) cosh2 𝑅 − 2|∇cosh 𝑟|2) + 𝑔|∇cosh 𝑟|2( 4

𝑘𝑢2
+ 8

)
≤ − 𝑘𝑔2𝜂 +

(
𝑐(𝑛, 𝑐0)

𝑘

)
𝑔𝜂 −

⟨
𝜑−1∇𝜑 + 2𝜂−1∇𝜂,∇(𝑔𝜂)

⟩
𝐻

(4.1)

+ 30𝑛𝑔

(
1 +

|𝑥|2
𝐸

𝑘

)
cosh2 𝑅 + 𝜎2𝜑𝜂,

where we used Young’s inequality and the facts that 𝜑−1∇𝜑 = 2𝜑𝑢−3∇𝑢 and 𝜑′ = 𝜑2𝑢−4 and 𝜂−1|∇𝜂|2 = 𝜂−1|𝜂′|2|∇cosh 𝑟|2 =
4|∇cosh 𝑟|2 ≤ 4(1 + cosh 𝑟)2. Therefore, we have

(
𝜕

𝜕𝑡
− Δ

)
(𝑔𝜂𝑡) ≤ − 𝑘𝑔2𝜂𝑡 +

(
𝑐(𝑛, 𝑐0)

𝑘
𝑡 + 1

)
𝑔𝜂 −

⟨
𝜑−1∇𝜑 + 2𝜂−1∇𝜂,∇(𝑔𝜂𝑡)

⟩
𝐻

+ 30𝑛𝑔
(
1 + 1

𝑐0𝑘

)(
cosh2 𝑅

)
𝑡 + 𝜎2𝜑𝜂𝑡. (4.2)

Now at a point
(
𝑥0, 𝑡0

)
where sup[0,𝑇 ] sup{𝑥∈Σ𝑡|𝑟≤𝑅}(𝑔𝜂𝑡) ≠ 0 is attained for 𝑡0 > 0, we have

𝑘𝑔2𝜂𝑡0 ≤

(
𝑐(𝑛, 𝑐0)

𝑘
𝑡0 + 1

)
𝑔𝜂 + 30𝑛𝑔

(
1 + 1

𝑐0𝑘

)(
cosh2 𝑅

)
𝑡0 + 𝜎2𝜑𝜂𝑡0,

which implies (dividing by 𝑘𝑔 = 𝑘|𝐴|2𝜑 on both sides) at
(
𝑥0, 𝑡0

)
we have

𝑔
(
𝑥0, 𝑡0

)
𝜂
(
𝑥0, 𝑡0

)
𝑡0 ≤

1
𝑘

(
𝑐(𝑛, 𝑐0)

𝑘
𝑡0 + 1

)
cosh2 𝑅 + 30𝑛

𝑘

(
1 + 1

𝑐0𝑘

)(
cosh2 𝑅

)
𝑡0 +

𝜎2

𝑘|𝐴|2 ( cosh2 𝑅)
𝑡0

≤
𝑐(𝑛, 𝑐0)

𝑘2
(1 + 𝑇 ) cosh2 𝑅 + 30𝑛

𝑘

(
1 + 𝑇 + 𝜎2𝑇|𝐴|2(𝑥0, 𝑡0)

)
cosh2 𝑅.

Note that for any (𝑥, 𝑡) ∈
{
𝑥 ∈ Σ𝑡 | cosh 𝑟 ≤ 𝜃 cosh𝑅

}
× [0, 𝑇 ] we have

𝑔(𝑥, 𝑡)𝜂(𝑥, 𝑡)𝑡 ≤ 𝑔
(
𝑥0, 𝑡0

)
𝜂
(
𝑥0, 𝑡0

)
𝑡0 and 𝜂 ≥ (1 − 𝜃)2 cosh2 𝑅.

If |𝐴|2(𝑥0, 𝑡0) ≤ 1, then

𝑐0|𝐴|2(𝑥, 𝑇 ) ≤ 1
𝑇

𝜂−1(𝑥, 𝑇 )𝜑
(
𝑥0, 𝑡0

)
𝜂
(
𝑥0, 𝑡0

)
𝑡0

≤ 4(1 − 𝜃)−2 sup
𝑡∈[0,𝑇 ]

sup
{𝑥∈Σ𝑡|𝑟≤𝑅}

𝑢2

≤
8
𝑐0
(1 − 𝜃)−2 sup

𝑡∈[0,𝑇 ]
sup

{𝑥∈Σ𝑡|𝑟≤𝑅}
𝑢4,
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where we used 𝑐0 ≤ 𝜑 ≤ 2𝑢2 and 𝜂 ≤ 2 cosh2 𝑅. Otherwise, if |𝐴|2(𝑥0, 𝑡0) > 1 then we have

𝑐0|𝐴|2(𝑥, 𝑇 ) ≤ 𝑔(𝑥, 𝑇 ) ≤
[
𝑐(𝑛, 𝑐0)

𝑘2

(
1 + 1

𝑇

)
+ 30𝑛

𝑘

(
1 + 1

𝑇
+ 𝜎2

)]
(1 − 𝜃)−2

≤ 𝑐
(
𝑛, 𝑐0

)(
1 + 1

𝑇

)
(1 − 𝜃)−2 sup

𝑡∈[0,𝑇 ]
sup

{𝑥∈Σ𝑡|𝑟≤𝑅}
𝑢4.

Since 𝑇 > 0 was arbitrary, we have just proved

Theorem 4.2. For all 𝑡 ∈ [0, 𝑇 ], any 𝑅 ≥ cosh−1(𝑛) and any 𝜃 ∈ (0, 1) we have

sup
{𝑥∈Σ𝑡| cosh 𝑟≤𝜃 cosh𝑅}

|𝐴|2 ≤ 𝑐
(
𝑛, 𝑐0

)(
1 + 1

𝑡

)
(1 − 𝜃)−2 sup

𝑠∈[0,𝑡]
sup

{𝑥∈Σ𝑠|𝑟≤𝑅}
𝑢4.

4.2 Estimates on all the higher order derivatives
The estimates on all the higher order derivatives could be obtained analogously by looking at the evolution equations of the

higher derivatives of the second fundamental form, see e.g. [7] and [19]. For this, we have

Lemma 4.3. For hypersurfaces Σ𝑡 moving by MMCF in ℍ𝑛+1 which can be written locally as radial graphs, we have

(i) (
𝜕

𝜕𝑡
− Δ

)
∇𝑚𝐴 =

∑
𝑖+𝑗+𝑘=𝑚

∇𝑖𝐴 ∗ ∇𝑗𝐴 ∗ ∇𝑘𝐴 + 𝜎
∑

𝑖+𝑗=𝑚

∇𝑖𝐴 ∗ ∇𝑗𝐴 +
∑

𝑖+𝑗=𝑚

∇𝑖𝐴 ∗ ∇𝑗𝑅𝐻 + 𝜎 ∗ ∇𝑚𝑅𝐻.

where 𝑆 ∗ 𝑇 is a tensor formed by contraction of tensors 𝑆 and 𝑇 by the metric 𝑔 on Σ𝑡 or its inverse;
(ii) (

𝜕

𝜕𝑡
− Δ

)|∇𝑚𝐴|2 ≤ − 2|∇𝑚+1𝐴|2
+ 𝑐

( ∑
𝑖+𝑗+𝑘=𝑚

|∇𝑖𝐴||∇𝑗𝐴||∇𝑘𝐴||∇𝑚𝐴| + 𝜎
∑

𝑖+𝑗=𝑚

|∇𝑖𝐴||∇𝑗𝐴||∇𝑚𝐴| + |∇𝑚𝐴|2 + 𝜎|∇𝑚𝐴|2).

Theorem 4.4. For all 𝑡 ∈ [0, 𝑇 ], any 𝑅 ≥ cosh−1(𝑛) and any 𝜃 ∈ (0, 1) we have

sup
{𝑥∈Σ𝑡| cosh 𝑟≤𝜃 cosh𝑅}

|∇𝑚𝐴|2 ≤ 𝑐

(
𝑛, 𝑐0, sup

𝑠∈[0,𝑡]
sup

{𝑥∈Σ𝑠|𝑟≤𝑅}
𝑢

)(
1 + 1

𝑡

)
(1 − 𝜃)−2

(
1 + 1

𝑡

)𝑚+1
.

Proof. Similar to the proof of Theorem 4.2, c.f. [7]. □

5 PROOF OF THEOREM 1.1

Our goal in this section is to prove the main Theorem 1.1.

Proof. We will use the method of continuity. First assume Σ0 (or equivalently 𝑣0) is smooth. For any 𝜀 > 0, define the solid

cylinder

𝐂𝜀 =
{

𝑥 ∈ ℍ𝑛+1 ∶
|𝑥|𝐸
𝑥𝑛+1

≤
1
𝜀

}
,

and let Σ𝜀
0 = Σ0 ∩ 𝐂𝜀 and Ω𝜀 ∶= 𝐅−1

0
(
Σ0 ∩ 𝐂𝜀

)
. Then Ω𝜀 is compact and Γ𝜀 ∶= 𝐅0

(
𝜕Ω𝜀

)
is a smooth radial graph over 𝜕Ω𝜀.



16 ALLMANN ET AL.

From the existence result in [15] for the approximate MMCF we know that the initial-boundary value problem

⎧⎪⎪⎨⎪⎪⎩

𝜕

𝜕𝑡
𝐅(𝐳, 𝑡) = (𝐻 − 𝜎)𝝂𝐻, (𝐳, 𝑡) ∈ Ω𝜀 × (0,∞),

𝐅(𝐳, 0) = 𝐅0(𝐳), 𝐳 ∈ Ω𝜀,

𝐅(𝐳, 𝑡) = Γ𝜀(𝐳), (𝐳, 𝑡) ∈ 𝜕Ω𝜀 × [0,∞),

(5.1)

has a unique radial graph solution

𝐅𝜀
𝑡
(𝐳) = 𝐅𝜀(𝐳, 𝑡) ∈ 𝐶∞(

Ω𝜀 × (0,∞)
)
∩ 𝐶

0+1,0+ 1
2
(
Ω𝜀 × (0,∞)

)
∩ 𝐶0(Ω𝜀 × [0,∞)

)
,

and we denote Σ𝜀
𝑡
= 𝐅𝜀

(
Ω𝜀, 𝑡

)
.

Now, for every 𝜀 ∈ (0, 1), let 𝑣𝜀(𝐳, 𝑡) be the solution to (5.1) (c.f. (1.4)), namely,

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑣𝜀(𝐳, 𝑡)
𝜕𝑡

= 𝑦2
𝛼𝑖𝑗𝑣𝜀

𝑖𝑗

𝑛
− 𝑦𝐞 ⋅ ∇𝑣𝜀 − 𝜎𝑦𝑤𝜀, (𝐳, 𝑡) ∈ Ω𝜀 × (0,∞),

𝑣𝜀(𝐳, 0) = 𝑣0(𝐳), 𝐳 ∈ Ω𝜀,

𝑣𝜀(𝐳, 𝑡) = 𝜙𝜀(𝐳), (𝐳, 𝑡) ∈ 𝜕Ω𝜀 × [0,∞).

(5.2)

For a fixed 𝛿0 > 0 sufficiently small, let

𝐸𝑡,𝜀,𝛿0
∶= Σ𝜀

𝑡
∩
{

𝑥 ∈ ℍ𝑛+1 ∣ 𝑟(𝑥) ≤ cosh−1
(

1
𝛿0

)}
= Σ𝜀

𝑡
∩ 𝐂𝛿0

,

where 𝑟(𝑥) is the hyperbolic distance from 𝑥 ∈ ℍ𝑛+1 to the 𝑥𝑛+1-axis and cosh 𝑟(𝑥) = |𝑥|𝐸
𝑥𝑛+1

. Then 𝐸𝑡,𝜀,𝛿0
is a compact radial graph

and we have 𝐸0,𝜀,𝛿0 = 𝐸0,𝛿0,𝛿0 for all 𝜀 ≤ 𝛿0. By compactness, there exist caps 𝑆1, 𝑆2 with constant mean curvature 𝜎 such that

the Euclidean norms satisfy 𝑐−1
(
Σ𝛿0
0

)
≤ |𝑥1|𝐸 ≤ ||𝐅𝜀

0(𝐳)|| ≤ |𝑥2|𝐸 ≤ 𝑐

(
Σ𝛿0
0

)
for all 𝑥𝑖 ∈ 𝑆𝑖, 𝑖 = 1, 2, any 𝐳 ∈

(
𝐅𝜀
0
)−1(

𝐸0,𝜀,𝛿0
)
,

and any 𝜀 ≤ 𝛿0. This implies, by the comparison principle for MMCF, that for all 𝜀 ≤ 𝛿0 we have

sup
𝑡∈(0,∞)

sup
𝐳∈(𝐅𝜀

𝑡
)−1(𝐸𝑡,𝜀,𝛿0 )

|𝑣𝜀(𝐳, 𝑡)| ≤ 𝑐0

⎛⎜⎜⎝𝑛, 𝛿0, sup
𝐳∈𝐅−10 (𝐸0,𝛿0 ,𝛿0 )

|𝑣0(𝐳)|⎞⎟⎟⎠.
For 𝜃 ∈ (0, 1), let

𝐺𝑡,𝜀,𝛿0,𝜃
∶=

{
𝑥 ∈ 𝐸𝑡,𝜀,𝛿0

∣ 𝑒(𝑛+𝜎)𝑡
(
cosh 𝑟(𝑥) + 𝜎

𝑛 + 𝜎

)
≤

𝜃

𝛿0

}
.

Note that by Theorem 3.8, for all 𝜀 ≤ 𝛿0 and any 𝑇0 > 0 we have

sup
𝑡∈[0,𝑇0]

sup
𝐳∈(𝐅𝜀

𝑡
)−1(𝐺

𝑡,𝜀,𝛿0 ,
1
2
)
|∇𝑣𝜀(𝐳, 𝑡)| ≤ 𝑒(𝑛+2)𝑇0𝑐1

⎛⎜⎜⎝𝑛, 𝛿0, 𝑐0, sup
𝐳∈𝐅−10 (𝐸0,𝛿0 ,𝛿0 )

|∇𝑣0(𝐳)|⎞⎟⎟⎠.
For 𝜀0 > 0 and 𝜃 ∈ (0, 1), let

𝐾𝑡,𝜀,𝜀0,𝜃
∶=

{
𝑥 ∈ 𝐸𝑡,𝜀,𝛿0

∣ cosh 𝑟(𝑥) ≤ 𝜃

𝜀0

}
.

Choose 𝛿0 > 0 sufficiently small such that
1

𝛿
1∕2
0

− 𝜎

𝑛+𝜎
≥ 2, and let 𝑇0 = − 1

2(𝑛+𝜎) log 𝛿0 and 𝜀0 =
(

1
𝛿
1∕2
0

− 𝜎

𝑛+𝜎

)−1
. Then, for our

choices of 𝛿0, 𝑇0, 𝜀0 we know that for any 𝜀 ≤ 𝛿0,

𝐺
𝑇0,𝜀,𝛿0,

1
2
= 𝐾

𝑇0,𝜀,𝜀0,
1
2
.
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Hence, for all 𝜀 ≤ 𝛿0, we have

sup
𝑡∈[0,𝑇0]

sup
𝐳∈(𝐅𝜀

𝑡
)−1(𝐾

𝑡,𝜀,𝜀0 ,
1
2
)
|∇𝑣𝜀(𝐳, 𝑡)| ≤ 𝑒(𝑛+2)𝑇0𝑐1

⎛⎜⎜⎝𝑛, 𝛿0, 𝑐0, sup
𝐳∈𝐅−10 (𝐸0,𝛿0 ,𝛿0 )

|∇𝑣0(𝐳)|⎞⎟⎟⎠.
Therefore, by Theorem 4.4, for any integer 𝑚 ≥ 2 and any 𝜀 ≤ 𝛿0, we have

sup
𝑡∈[0,𝑇0]

sup
𝐳∈(𝐅𝜀

𝑡
)−1(𝐾

𝑡,𝜀,𝜀0 ,
1
2
)
|∇𝑚𝑣𝜀(𝐳, 𝑡)| ≤ 𝑐𝑚

(
𝑛, 𝛿0, 𝑐1

)
.

Hence, for such fixed 𝛿0 > 0, by the Arzelà–Ascoli Theorem, there exists some sequence
{
𝜀𝑖,0

}∞
𝑖=1 such that 𝜀𝑖,0 → 0 as

𝑖 → ∞ and such that 𝑣𝜀𝑖,0 converges uniformly in 𝐶∞ to some 𝑣𝜀0,𝑇0 ∈ 𝐶∞(
Ω2𝜀0 × [0, 𝑇0]

)
as 𝑖 → ∞ which solves (5.2). Now

fix a descending sequence
{
𝛿𝑘
}∞
𝑘=0 such that 𝛿𝑘 → 0 as 𝑘 → ∞. Then define 𝑇𝑘 = − 1

2(𝑛+𝜎) log 𝛿𝑘, and
1
𝜀𝑘

= 1
𝛿
1∕2
𝑘

− 𝜎

𝑛+𝜎
. Then

𝑇𝑘 → ∞ and 𝜀𝑘 → 0 as 𝑘 → ∞.

For nonnegative integers 𝑘, suppose we have a function 𝑣𝜀𝑘,𝑇𝑘 ∈ 𝐶∞(
Ω2𝜀𝑘 × [0, 𝑇𝑘]

)
solving (5.2) such that 𝑣𝜀𝑘,𝑇𝑘 is the

uniform limit of some sequence
{
𝑣𝜀𝑖,𝑘

}∞
𝑖=1 and 𝑣𝜀𝑘,𝑇𝑘 |Ω2𝜀𝑙×[0,𝑇𝑙] = 𝑣𝜀𝑙,𝑇𝑙 for all nonnegative integers 𝑙 ≤ 𝑘. We can see this by

induction. The case of 𝑘 = 0 was done above. Our interior estimates imply we have uniform bounds of 𝑣𝜀 and its derivatives on

Ω2𝜀𝑘+1 ×
[
0, 𝑇𝑘+1

]
for 𝜀 ≤ 𝛿𝑘+1. So, again by the Arzelà–Ascoli Theorem, there exists a subsequence

{
𝑣𝜀𝑖,𝑘+1

}∞
𝑖=1 of

{
𝑣𝜀𝑖,𝑘

}∞
𝑖=1

such that 𝑣𝜀𝑖,𝑘+1 converges uniformly to some 𝑣𝜀𝑘+1,𝑇𝑘+1 ∈ 𝐶∞(
Ω2𝜀𝑘+1 ×

[
0, 𝑇𝑘+1

])
as 𝑖 → ∞. Since Ω2𝜀𝑘 ×

[
0, 𝑇𝑘

]
⊂ Ω2𝜀𝑘+1 ×[

0, 𝑇𝑘+1
]

and
{
𝑣𝜀𝑖,𝑘+1

}∞
𝑖=1 is a subsequence of

{
𝑣𝜀𝑖,𝑘

}∞
𝑖=1, we must have 𝑣𝜀𝑘+1,𝑇𝑘+1 |Ω2𝜀𝑘×[0,𝑇𝑘] = 𝑣𝜀𝑘,𝑇𝑘 .

If (𝐳, 𝑡) ∈ 𝕊𝑛
+ × [0,∞), then there exists some nonnegative integer 𝑘 such that (𝐳, 𝑡) ∈ Ω2𝜀𝑘 × [0, 𝑇𝑘]. Define 𝑣(𝐳, 𝑡) =

𝑣𝜀𝑘,𝑇𝑘(𝐳, 𝑡). Then our construction of the sequence 𝑣𝜀𝑘,𝑇𝑘 shows this definition is well-defined. Moreover, if we define 𝐅(𝐳, 𝑡) =
𝑒𝑣(𝐳,𝑡)𝐳 on 𝕊𝑛

+ × [0,∞), then 𝐅 ∈ 𝐶∞(
𝕊𝑛
+ × [0,∞)

)
solves (1.4).

Now if Σ0 is merely locally Lipschitz continuous, then for any fixed compact subset Ω ⊂ 𝕊𝑛
+, we can approximate 𝑣0 by

smooth functions 𝑣
𝑗

0 with the same Lipschitz bound as the Lipschitz bound of 𝑣0 on Ω. By the above arguments, for every

𝑠, there is a smooth one parameter family of functions 𝑣
𝑗

𝑡
solving (5.2) with initial data 𝑣𝑠

0. Now our interior estimates imply

𝑣
𝑗

𝑡
and all its derivatives are uniformly bounded in any compact set 𝐾 ⊂ Ω, which again implies the existence of a uniform

limit 𝑣 ∈ 𝐶∞(
𝐾 × (0, 𝑇 ]

)
∩ 𝐶0+1,0+1∕2(𝐾 × [0, 𝑇 ]

)
. Since Ω and 𝑇 were arbitrary, this establishes the existence of a function

𝑣 ∈ 𝐶∞(
𝕊𝑛
+ × (0,∞)

)
∩ 𝐶0+1,0+1∕2(𝕊𝑛

+ × [0,∞)
)

which solves (1.4). □
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