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1  INTRODUCTION

Mean curvature flow (MCF) was first studied by Brakke [4] in the context of geometric measure theory. Later, smooth compact
surfaces evolved by MCF in Euclidean space were investigated by Huisken in [11] and [12], and in arbitrary ambient manifolds
in [13]. The evolution of entire graphs by MCF in R"t! was also studied in [6], the result being improved in [7]. Lately, the
MCEF in Euclidean space has attracted much attention. See, e.g., the survey of various aspects of the MCF of hypersurfaces by
Colding, Minicozzi and Pedersen [5] and the references therein. In [19], Unterberger considered the MCF in hyperbolic space
H"*! and proved that if the initial surface X, has bounded hyperbolic height over S”, (i.e., 9%, = 0S'}), then under the MCF,
%, converges in C* to S'}, which is minimal.

The Asymptotic Plateau Problem of finding smooth complete hypersurfaces of constant mean curvature in hyperbolic space
H™! with prescribed asymptotic boundary at infinity has also been studied over the years, see [1], [9], [14], [18] and [16].
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In [8] Guan and Spruck proved the existence and uniqueness of smooth complete hypersurfaces of constant mean curvature
o € (—n, n) in hyperbolic space with prescribed C!-! star-shaped asymptotic boundary at infinity. In [17], among others, De
Silva and Spruck recovered this result using the method of calculus of variations. In the previous joint work [15] of Xiao and
the second author, the following modified mean curvature flow (MMCF) was first introduced, which is the natural negative
Lz-gradient flow of the area-volume functional I(X) = Iq(v) = Aq(v) + 6V (v) associated to X as in [17]. It can be used to
continuously deform hypersurfaces in H"*! into constant mean curvature hypersurfaces with prescribed asymptotic boundary
at infinity.

LetF(z,1) : S' X[0,00) — H"+! be the complete embedded star-shaped hypersurfaces (as complete radial graphs over S
moving by the MMCF in hyperbolic space H"*!, where S’} is the upper hemisphere of the unit sphere S" in R"*! and the
half-space model of H"*! is used. That is, F(-,7) is a one-parameter family of smooth immersions with images ¥, = F(Si, t),
satisfying the evolution equation

OF @0 =(H -0y, (1) S x[0,0),
F(z,0)=%, z€S., 1.1
F(z,1) =T, z €0S,

where H = Z?:l K'I.H denotes the hyperbolic mean curvature of X;, 0 € (—n, n) is a constant, and v denotes the outward unit
normal of %, with respect to the hyperbolic metric. More precisely, suppose the solution F(z, ) to the MMCEF (1.1) can be
represented as a complete radial graph over S}. That is,

F(z,1) = x(z,1) = "™z, (z,1) € S’ X (0, ), (1.2)
and " C 0, H" = {x,,; = 0} is the radial graph of a function ¢? over 0S", i.e., I" can be represented by
I(z) = e’z ze€0S].

We call such a function v(z, t) the radial height of 2, = F(-, 7). Note that ¥, remains a radial graph as long as the support function
(V. x) satisfies

(VE,x)p >0, (1.3)

where v, is the Euclidean outward unit normal vector of X,. Then one observes that the Cauchy initial-boundary value problem

for the MMCEF (1.1) is equivalent to the following degenerate parabolic PDE with initial and boundary conditions:

ou(z, 1) zaijvij
a0

—ye-Vo—oyw, (z,1) €S| X (0,00),

v(z,0) = vy(z), z€S], (1.4)
v(z,1) = (), (z,1) € 0S’ X [0, ),
where we represent %) as the radial graph of the function e0 over S’} and Uo| — ¢. Here y = (e, z) 5, and e is the unit vector in

os”
the positive x,, | direction in R"*!. Also, @'/ = y/ — %, 1<ij<nw=(1+|Vv]?) 1/2 and we denote by y,; the standard
metric of S’J’r and y"/ its inverse. Note that the MCF, i.e., the case of 6 = 0 for (1.1) was considered in [19], but the case of & # 0
is substantially different, see Remark 3.6.

In [15], the Cauchy initial-boundary value problem (1.4) for the MMCF of complete radial graphs was studied. The flow
starting from an entire star-shaped Lipschitz continuous radial graph with the uniform local ball condition on the asymptotic
boundary was shown to exist for all time and converge to a complete hypersurface of constant mean curvature with prescribed
asymptotic boundary at infinity. Let us elaborate a bit on the uniform local ball condition. Due to the degeneracy at infinity of
the MMCEF (1.4) for radial graphs, we will use the method of continuity and consider the approximate problem. For fixed € > 0
sufficiently small, let I, be the vertical translation of I" C {xn = 0} to the plane {xn 1= e} and let Q, be the subdomain
of S’} such that I, is the radial graph over €, (see Figure 1). For any e > 0 sufficiently small and any point P € X7 =T,

(denoting 28 =X, and I[j =I'), the uniform star-shapedness of I", implies that there exist balls B R, (a, P) and B R, (b, P) with
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FIGURE 1
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radii R; > 0 and R, > 0 and centered at a = (a’, —o-Rl) and b = (b’, o-Rz), respectively, such that {x,H_] = e} N Bg (a, P)is
internally tangent to I, at P and {xn = e} N Bg, (b, P)is externally tangent to I, at P. d By, (a, P) and 0By (b, P) are the so-
called equidistance spheres. Note that in a small neighborhood Bs(P) around P for some 6 > 0, both dB R, (a, P) N Bs(P) and
dBp, (b, P) N Bs5(P) can be locally represented as radial graphs. We say that the initial hypersurfaces Zf)’s satisfy the uniform
interior (resp. exterior) local ball condition whenever, for all € > 0O sufficiently small and all P € I',, we have Zf) N Bs(P)N
BR1 (a, P) = {P} (resp. ZS N Bs(P)N BRz(b, P) = { P}, see Figure 2), and the local radial graph (3BR1 (a, P) N B5(P) (resp.
dBp, (b, P) N Bs(P)) has a uniform Lipschitz bound depending only on the star-shapedness of I'. If the Eg’s satisfy both of
the uniform interior and exterior local ball conditions, then we say X, satisfies the uniform local ball condition. Such a uniform
gradient bound on the asymptotic boundary was necessary for a version of maximum principle to be applicable in order to obtain
a global gradient bound, which ensures the long time existence and convergence of the flow.

In this paper we would like to show the long time existence of the MMCF without the uniform local ball condition at the
infinity of the initial hypersurface. To this end, we consider the MMCEF starting from an entire locally Lipschitz continuous
radial graph £, C H"*! and show the long time existence of the flow. More precisely, we prove

Theorem 1.1. Let F,, : S} — H"*! be such that T, = FO(Si) is an entire locally Lipschitz continuous radial graph over
S'. Then the Cauchy initial-boundary value problem for the MMCF (1.1) has a solution F(z,1) € C*® (S’i X (0, oo)) N
C0+1'0+1/2(§1 x [0, ©)) and F(Sﬁ t) is a complete radial graph over S’ for any t > 0.

Remark 1.2. By the work of Guan—Spruck [8], Xiao and the second author [15], given a C!-! star-shaped n — 1 dimensional
closed submanifold at the infinity d,,H"*!, we can find a suitable initial hypersurface such that the MMCF exists for all time
and converges to a hypersurface of constant mean curvature which has the given submanifold as the asymptotic boundary. On
the other hand, MMCEF, starting from a horosphere {xn 1= c} (whose infinity is degenerate to a point in 9, H"*!), exists for
all time but never converges. Given such an example, one cannot expect the full convergence of the flow, as it depends on the
behavior of the initial asymptotic boundary. We expect that some intermediate geometric condition that is weaker (i.e., allows
degeneracy of the initial asymptotic boundary to some extent) than the uniform local ball condition in [15] will guarantee the
convergence of the flow. This will be investigated in our forthcoming paper.

The paper is organized as follows. In Section 2, we fix some notation and review some necessary preliminary materials. In
Section 3, we use the evolution equation of the support function (v, x) (see Proposition 3.5) and an appropriate space-time
cut-off function together with a conventional maximum principle argument to show a uniform interior gradient estimate for the
MMCEF (see Theorem 3.8). In Section 4, we show the interior estimates on all other higher order derivatives for the MMCEF (see
Theorem 4.2 and Theorem 4.4). We prove the main Theorem 1.1 in Section 5.
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2 | PRELIMINARY

Let’s first fix some notation. Operators without subscripts or superscripts are operators on X,. Corresponding operators in hyper-
bolic space, Euclidean space, or on S’} will be denoted with either a subscript or a superscript H, E, S, respectively. Greek
indices will range from 1 to n + 1, while Latin indices will range from 1 to n.

Denote ds% by {(-,-);» and V the Levi-Civita connection on H"*!. The ambient Riemann curvature tensor with respect to
the hyperbolic metric used in this paper is

(RNYXx,v)Z=V]Vviz-ViIvV]Z+ Vg( nZ-

1 . . . . .
Let {e 1" be the coordinate basis of H"*' with respect to the standard coordinates x* of R"*'. Define (R") = =
afa=1 + afyéd

< (RH ) (ea, e ﬁ)e},, €es > 4> the components of the hyperbolic Riemann curvature tensor. And define the components of the hyper-
bolic Ricci tensor

(Ric'),, = (ds3,)" (R")

H 2.1)

afys’

where (ds%q)w is the inverse of the metric dszH.
Since the upper-half space model of hyperbolic space H"*! and [R’fr“ are conformal, we have

Proposition 2.1. For any two vector fields X,Y on H™!,

1

Xn+1

Hy _ vE
vy =vEy +

((X’Y>Ee_ (X’e>EY - <Y’e>EX)’

where VE denotes the Levi-Civita connection on IRTI with respect to the standard Euclidean metric, (-, -) g denotes the standard
Euclidean inner product, and e = e, ;.

Let { V»}fl_ be a basis of T, Z,, and denote the induced metric on Z, by
1)i=1 p=t t

&ij = <Vi’vj>H'

Denote the second fundamental form on X, by

_ /vH
ay = (Vyv.v) -
so that the mean curvature of X, with respect to the hyperbolic metric is

H :guaij’

where g'/ is the inverse of g;;. With these we have
Proposition 2.2.

H _ E n+1
K. =X,k tVv©,

where KI.H and KI,E are hyperbolic and Euclidean principle curvatures of Z,, respectively, and v'*' = (v, e) g- Therefore,
H=x,, HE +nv",

where HY is the Euclidean mean curvature and v i; is the Euclidean unit normal of %,. That is, vV = X,.11 V-

H

Proof. Note that the hyperbolic principle curvatures ;" s are the roots of

E E
a.. n+1 8.
H _ ij v E H i
det(aij—K gij) = det e w7 R
n+1 X X

n+1
_ L -n E_K —V E
=x,/ det <aij . gl.j>,
n+1
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so that the proposition follows from

Proposition 2.3. For a function f : X, - R, where Z, moves by (1.1), we have

9
(5 - A)f == (Apf =V}, VESve) )

+ x50 (0 =2(VEf @) +2VEF v ) (vine)p —a{VELvE) L),

where A is the Laplace—Beltrami operator on Z,, % = F,(0/ot) = (H — o)vy, Ag is the standard Euclidean Laplacian, and
VE f is the Euclidean gradient of f.

Proof. Notice first
V=V (VT ovy) yva
div=divy, (V! vy)
Vi f=x VEL,

n+

1 <" e>E'

divy =divg —
Xnt1

Along with Proposition 2.1, these give
Af =divVy
=divy (VI f = (V" fovy) yve) - (V?H(VHf —(v"f, VH>HVH)’VH>H
=divy VI = (VI fovy) pdivg v =vig (VI fov )y = (Y VIS ve) + vV fove)y
=divy VI = (VI VI fove) +H(V fovy),
=divg (x;,,VES) = (14 Dx, (VES ), = (V7 (x0, VES)ove)
= Xt (Ve VS ) (Vi@ p + X (Vi € p (VIS Vi) p + X, (VIS @)y + H(VES vy )
=x,, dive VO +2x, (VES. @) p = (n+ Dx,  (VES €)= x0 (V) VESive)
=25, 1 (Vi @) p (VS vE) o+ X, (VIS )+ H(VE fovy ),
=x2, (Apf - (vavEf, VE>E) — X1 ((n=2(VEf €)= 2vi. @) (VEfve) ) + H(VE fovy )
Combining this with
Lr=H=0wyf =H{VEfvy) = 5mo(VELvE),

gives the desired result. O

Now note that the Riemann curvature tensor is
H _ H —
(R )aﬂyé =((R )(ea,eﬂ)ey,e5>H = 8459y — SaySps»
since H"*! has constant sectional curvature —1. In particular, VR = 0. Also, the Gauss equation in this setting reads as

. — H
Gauss: Rijkl = a,-kaj, - a,-,ajk + (R )ijkl’
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where the index O denotes the v direction. Note also that we have the interchange of two covariant derivatives on a two

tensor:

VjV,-ak, = V[Vjak[ + aka m + a,ijkm,

Jil J

where R',j o= g" R, k- Using these equations one can derive the following well-known Simons’ identity.
Lemma 2.4. On X, C H™!, we have
(i) (Simons’ identity)

Aa;; =V,V;H + Ha,,a} — |A|2a,-j —na;; + Hoyj,

where A is the Laplacian for tensors on X, V the covariant derivative on %, V; = V and A = (ai j) the second fundamental
Sform on X, all with respect to the induced hyperbolic metric.

(ii) A|A|* =24V, V;H +2HTr(A%) —2|A|* - 2n|A|* + 2H? + 2|VAJ~

Proof. We include a proof for the sake of completeness. See also [13] for general ambient manifolds. Fix a point on %,. We will
work on a normal coordinate at this point. For (i), we have
Aa[j = Vkaaij = Vija,»k

I

!

kik
= ViVjH + aﬁ(akkai, —aa; + (RH)kl.kl) + akl(akjal-, —aga; + (RH)kijl)
=V,V,H + Hauaﬂ« + aj1(5k15ik - 5kk5i1) - |A|2aij + ak1(5k15ij - 5jk5i1)
=V,V,H + Ha,»,a; - |A|2a,-j —na;; + Hé;;.
For (ii), we have
AlA|* = 24" Ag;; + 2|V A|?
=24"V,V,;H +2HTr(A%) = 2|A|* = 2n]A|* + 2H* + 2|V A[*. O

In order to obtain the estimates on higher order derivatives, we also need the evolution equation for the second fundamental
forms.

Lemma 2.5. On X, C H™!, we have

L0 k

(i) =a; =V;V;H —(H - o)afa; +(H - a)(RH)inO,
(ii) %|A|2 =24"V,V,;H +2(H - 0)Tr(A%) = 2H(H - 0),

(iii) (% - A)|A|2 = 2|A* + 20| A2 — 2|V A]? = 4H? + 20 (H — Tr(42)).
Proof.

(i) The evolution equation for g; ; along the mean curvature flow in general Riemannian manifold can be found in [13]. Here,
for completeness, we prove it in our setting. Note that Vf V; = a;;Vy, we compute

0 _ [oHyH H H
Ea,-j—<Vinivj,vH + Vv,.vj*vg"
ot H H

ot

9
= <V€V€E’VH>H + ((RH)(vi,a/dt)vj,vH>H + (vaj,—VH>H
=(Vy, vy ((H - W) vy, +H = o) (R™) 0,0 = THvi(H)
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- (vjf(vjj’_HvH) - val_l((H - a)ajka),vH)H +(H - 6)(RH)in0

=V (V]'H) - (H - o)afa;, +(H - o)(R") . =T}V (H)

=v,(v,(H)) - (H = 0)a‘a;, + (H —o)(R") . — ijjvk(H)

i0j0

=V,V;H - (H - O')Gfajk +(H — ‘7)(RH)1'0/’0’

=~ T vi(H)

7

where VH = g"'v.(H)v,. Suppose {x;} is a local coordinate on S, then V[:F*(di)q) and v,-(H):Z—Z,

vi(v,(H)) = o*H

0x;0x;
(ii) Notice %g’j =2(H - 0)g'*g'!ay,, so that
EIAI2 = E(gugk[aikajl)
=4(H - O')aijaikaf + 2aij(ViVjH —(H - a)aikaf +(H - 6)(RH)
=2a""V,V,H +2(H - 0)Tr(A*) —=2H(H - o).

(iii) Combining (ii) with the Simons’ identity.

Finally, we note that there is a C°-estimate that comes for free.

ino)

Remark 2.6. Notice |x| ¢ is bounded above on any compact region of Z,, by the same constant, for all time. To see this, there exist,

for any r > 0, caps {(xl, ,xn+1) € H! (x1)2 + -+ (xn)2 + (xn+1 + o-r/n)2 = rz}, with constant hyperbolic mean cur-

vature o. These caps have bounded |x| ;. The result follows from a comparison principle for MMCEF. That is, the ratio of the
Euclidean radial height above a fixed point in 0., H"*! between two hypersurfaces (with one compact) moving by MMCF in

hyperbolic space is non-decreasing in time.

3 | INTERIOR GRADIENT ESTIMATES

The MMCEF (1.1) for complete radial graphs is a (degenerate) quasi-linear parabolic PDE, see (1.4). We would like to use the con-
ventional maximum principle techniques to obtain interior estimates. Similar interior estimates were obtained in [15, Section 9]

using the same techniques. However, the estimate there is not uniform in € and therefore it is not sufficient in our current case. In

order to overcome the degeneracy at infinity of the PDE and achieve the uniform interior estimate, we first need to find an appro-
priate space-time cut-off function. To do so, we let (x) be the hyperbolic distance from a point x € H"*! to the x,, | -axis. Then

where |x|p = 1/(x, x) g, see e.g. [3, Cor. A.5.8.]. In the following, we let z = ﬁ
E

Proposition 3.1.

ot oshr

Proof. Notice
VElxlE =1z,
E vE E -1 -1 -1 -1
VVEV |x|g = VVEZ =vplxlp x+|x[z v = —IxI; (2 vE)pz + |x|; v,

Aplx|p =divpz = —|x|' + x5 (n+ D) = nlx| ;.

(i - A)coshr = %(1 —(vp.2)y) — (n—o(vp,e)g) coshr — o(vy,z) .
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Moreover, we have

vEx ;—el—l = xn-lz—l
VE Ve, = ;3-1<e ve)pe
A x;il Zx;-il’
VE coshr = xnil ;fllxlEe = x;ilz - x;il(cosh rye,

anVE coshr =z — (coshr)e,

and
VE VE coshr =VE ( n+lz—x 1(coshr)e)
=-x2(vp.e)pz+x ! (= IxI;(z vE)pz + x| vE) + X2 (v, e) p(cosh re
n+1\VE*“/E n+1 E >»YE/E EVYE n+1\VE>%/E
-1

- n+1< n+1 n+1(COShr)e’VE>E

=x2 —<e,VE>EZ—;<Z,VE>EZ+;VE—<Z,VE>Ee+ZCOShI‘<e,VE>Ee.
n+l coshr coshr

Now, since (z,e)y = —L__ we have

coshr
_ -1
Agcoshr=Apx ' |x|g

E E
_2<V n+1,V |x|E> +xn+1AE|x|E+|x|EAExn+1

1
—xn+1<(n )m+2COShr>.

Therefore, we finally arrive at

<% _A)COShrZ_ n+1(AECOSh"— <VE VE coshr, VE) )

+X,41 [(n=2)(VF coshr,e) . +2(VF coshr,vi) (e.vp)p —o(VFcoshr,ve) ]

1

— 2, : +2coshr(e, v)2
coshr (z,vp)p(e,vp)g coshr(e,vp)y

1 2
=(2 - n)(z,€), — 2 coshr — ——(z, +
2 —n)z,e)g coshr coshr<z VE)E

+(n—2)z,e)p —(n—2)coshr+2(z,vp)(e,vp)p

— 2 coshr(e, VE)% —0(z,vg)p +ocoshr(e, vp)y

1

= coshr(l —(vp,2)3) — (n—o{e,vp)p) coshr — o(z, vi) .

Now, for any R > 0, we define a space-time cut-off function (c.f. [19])

n =coshR — e("+")’<coshr + -2 )
n+o

Then, for o > 0 we have

(% _ A) _ e(n+o)t((n +o)coshr+o + (% - A> coshr)

— _ plntox [(n+ c)coshr+o + Coiﬁ(l —(vp,z)%) — (n—o(e,vp)p)coshr —o(z, v
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=_ e(n+a)t[$(l - (VE,Z)ZE) +o-(1 —(z,vp)g +coshr(1 + (e,VE)E))] <0.

Remark 3.2. We will only deal with the case of ¢ > 0. The case of ¢ < 0 can be handled using the hyperbolic isometric reflection

* . _X n
x* = — w.rt. §+.

Ix[2
Remark 3.3. Notice that

z— Vv 1 1

Vp=—— and (v, Z)p= (Ve x)p = )
1+ [Vo|? x| £ V1+|Vo|?

Therefore, in order to get the interior gradient estimate on |Vo|, we will need to get a positive lower bound on (v, z) ;;, which is
(almost) equivalent to (v, x) ; = x,,,1{Vy, X) i, thanks to the CV-estimate on | x| ; using appropriate barriers (see Remark 2.6).
Thus, in the following we will first look at the evolution equation of (v, x);; and finally arrive at the evolution equation of
(v, x) g (see Proposition 3.5). Then the cut-off function and maximum principle techniques apply conventionally.

From here on suppose the v;’s are in fact a normal coordinate basis of T,X, with respect to the hyperbolic metric. We may
extend the vector fields v; and v, on X, to a neighborhood of H"*! by requiring that v; is constant along the integral curves of
x, so that [v;, x] = [vg, x] = 0, where, e.g., [v;, x] is the Lie bracket of v; and x. See, e.g., [2]. Note that the Codazzi equation
becomes, since H"+! has constant sectional curvature,

aij’k = aik’j. (31)

Proposition 3.4. For radial graphs moving by MMCF,

<% - A)("H»x)H = (|A|2 - n)("Hvx)H*

where |A|*> = g/ gMa;a 1 IS the norm squared of the second fundamental form on %,.
Proof. We have, using [v;, x] = 0, (2.1), and Codazzi equation (3.1), and summing over repeated indices,
Avy, x)g =vvi{vy, X))y = V,-<V€VH,X>H + V[<VH, Vgx>H
=— (Vfa,-jvj,x>H - |A|2(VH,x)H - 2<a[jvj,fo>H
+ (v (RT)Gevvi) y + (v VIV
== V,(H)(v;,x), + <(RH)(x, V)V, VH>H — AP vy, X))y + a;;xg"” + xay;
=—(VH,x)y = Ric" vy, vi) (v, x) i = AP (v, ) gy + x(H)

=(n=1AP)(vy.x)yy = (VH.x)y + x(H).

Notice V{,{ vy is tangential, and [%, v,-] = 0 from the naturality of the Lie bracket. So,
or

P
<Vf,’vH,vi> - —<vH,VZE> = —v(H =)~ (H = o)(v. Vv, ) = —v,H,
a H H

which implies

vy, =-VH.

ot

Also,

((VE’x>E e—(Vg,e)px — (X, e)EVE)> =0

H _ E 1
<VH’VVHx>H_<VE’VVEx+x .

n+1
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: E . _ -
since V) x = v and (x,e)p = x,,,. Hence,

7]
E(VH,)C)H = <ngH,x>H +(H - o-)<VH,Vf’Hx>H

ot

Finally, notice that x(H) = 0 since x is a Killing vector field in H™!, c.f. [10, Appendix]. |
Proposition 3.5. For radial graphs moving by MMCEF,

(2 - )iy = (14P = 0(v.€) ) X0 = ATV x) g X 52

Remark 3.6. In the case of MCEF, i.e.,, 0 =0, Equation (3.2) and the maximum principle yield immediately a global
gradient bound for the approximate MCF (starting from the compact hypersurface 26), which ensures the global exis-
tence of the approximate MCF, see [19]. On the other hand, in the case ¢ # 0, the maximum principle is not applicable
directly, but thanks to the existence result from [15] for the approximate MMCF we are able to get around with this, see
Section 5.

Proof. We have, using Vx, = VA x, .1 = (Vx, vy ) vy =x2, (e—(vp,e)pvp), that

2
V[ = 0, (1= (vi0)}).

Hence, using Proposition 2.3, we have
0 0
<E - A><VE7X>E = (E - A><xn+l<VH7x>H)
J d
:xn+1(5 - A)(VH’X)H + (Vst>H(E - A>Xn+1 - 2<Vxn+l’ V<VH’x>H>H

=(IAP =n)(vE, x)p + (Ve X)p (n =2+ 2(vp. ); —o(vp.e)p)

1 1
_2<Vxn+1,x—V(vE,x)E> —2<Vxn+1,<vE,x)EVx >
H H

n+1 n+1

= (|A|2 -2+ 2<VE?e>2E - 6<VE’e>E)<VE’x>E
- 2<xn+le’ V<VE’x>E>H +2(vg, x>E(1 - <VE’e>2E)

= (AP = 0(vE. € g ) (Ve X) g = 2V(VE. X) . X0 1€) 0

Now, in order to obtain the interior estimate using maximum principle techniques, we multiply (v, x)E1 by the space-time
cut-off function and let

3
E=n*vg, x)E1 = (coshR - e("”)’(coshr + %)) (Vgs x)l_sl. (3.3)
n+o
Proposition 3.7. For radial graphs moving by MMCF with o € [0, n),

(2-a)e<m+2e

Proof. This is a straight-forward calculation.
4 _ -1( 9 3,.,3(9 -1 3 -1
(E - A)é =(VE. X)p (5 - A)n +7 (E - A)(VE,x)E - 2<V71 SV(VE, X) g >H

_1{ 0 _ /(0
=3712(VE,X>EI (E - A)’? - 6’1<VE5X>EI|V’7|§{ - ’73<VE’X>52<5 - A)<VE’x>E
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=2 (v, XY IV x) p 1+ (v, ) (Vi Vv, X))
<-n v, x)Ez((|A|2 —o (v, @) p ) (Ve X)p = 2(V(VE X) g, X, 1€) )

1 -
= 2 Ve ) E V(v Xl

< (v, x)5 ((Vp.e)po — [A]? +2) < (n+2)¢,
where we have used
200 5 X VY £ X) g X1 €y S 3 (Vs 00 IV )y 4 20 v )
and
6112(VE,x)E2<V11, V(VE,x)E>H < 611(VE,x)EI|V11|§{ + %7]3(VE,X)E3|V<VE,X>E|%_I,
from Young’s inequality. ]

The following theorem is the main technical interior gradient estimate.

Theorem 3.8. For any R > cosh™ (Le(”“L")T) and 0 € (;e("”ﬁ, 1> such that {x € %, | r < R} is a compact
n+o (n+o0)cosh R
radial graph for all t € [0,T], we have

-1 n+2)T+v -3 -1
sup (vp,z)p < el osc(1 — ) sup (Vg Z)g »
{XEX,|em+) (cosh r+~2-)<0 cosh R} {x€Xy|r<R}

where U, . = MaX( es |<Rr)xj0,r] ¥ — Mil{ces |<r)xj0r] U i the oscillation of the radial height of x (see (1.2)) in
{(xeZ |r<R}xI[0,T]

Proof. The previous proposition and Hamilton’s trick imply, for almost all t € (0, T),

i sup &< (n+2) sup ¢,
dt (xes,|r<R) (x€X,Ir<R}

so we may integrate from O to T' to obtain

3 -1 -1
sup (v, x)g <e"PTsup (v, )
{xeXr|r<R} {xeXy|r<R}

Now notice e“min < |x| g implies

e("+2)T_Umin sup ’13<VE’ Z>£‘1 > e(n+2)T sup ’73<VE’ X)El )

{xeXy|r<R} {xeZy|r<R}

Similarly, emax > |x| implies

e sup pvenp < s Pve
{xeZr|r<R} {xeXr|r<R}

These two inequalities imply then

sup ’13<VE; Z)El < e("+2)T+Umax_Umin sup ’73 (VE’ z);;"l )

{xeXr|r<R} {xeXy|lr<R}
We also have
3 -1 3 -1
sup nw(vp.z)p < sup  n{(vg.Z)g,
{x€X|e(rto) (cosh r+ n;La )<6 cosh R} {x€Xr|r<R}

and 1% > (1 — 0)3 cosh® R in {x €L, | ") (coshr+ n%g) < @cosh R} since 6 cosh R+n > cosh R there. We also have
7° <cosh® R everywhere. These facts, along with replacing T' with any ¢ € [0, T'), imply the result. O
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4 | INTERIOR ESTIMATES ON HIGHER ORDER DERIVATIVES

4.1 | Estimates on the second derivatives

Now let u = (v, X>El and define

where

-1
k=2 sup sup u? .
1€[0,T] {x€Z,|r<R}

Let ¢ denote differentiation of ¢ with respect to u>. From Remark 2.6, we know that
o<Ixl <o
for some constant ¢, depending on X.
Combining Proposition 3.5 with (iii) of Lemma 2.5, we obtain:
Lemma 4.1. On {x € Z, | r < R} and 2, moves by MMCF, we have

F) c(n, cp) _
(2 -4)(14P0) < -kIAI*6? + (T" - k(p’|w|2> AP0 = 07 (V0. V(I14P9)) , + o%0.

Proof. We have

0 5 0 2 2f 0 2
——A) Alg) = (--A)A +]A (——A) —2VIALV
(5 -2)(14P¢) = o5 —A)IAP +14P(S - )0 —2( V1A Vo),

=14+ 11+ 1IL
By (iii) of Lemma 2.5, we have

1= (2|A1* +2n|A]> = 2|VA|]> — 4H? + 26 (H - Tr(A%)))
4 2 2 2 2 1, 1A 4
< o 2141* +2n|A)? = 2|VA)? —4H? + 6| H?cy + — + —— +¢||A]
&) 5]
< pQ2+ci0)|Al* + (p<2n + 1) A2 = 2¢|VAI + Lo
€1 %)

where we used Young’s inequality and the fact that |Tr(A®)| < |A|®. We also chose constants c;, ¢, such that ¢;o < cok and
c,0 < 4, where ¢y < @.
For the second term II, by Proposition 3.5 we have

<i - A)(p = —2(;{)'u3<i - A)(VE,x>E —6¢ |Vu|* — 4¢""u*|Vu|?
ot ot
= —2(;{)'u2(|A|2 —o(vg, e)E) —4¢'u(Vu, Xpp1€) g — (6 + 8ke)¢@' | Vul?

since ¢"u? = 2keg.
Therefore, using Young’s inequality again we get

I < -2u”¢'|Al* = (6 + 8k@)@' | A|*|Vul* + k@' |A]*|Vul* + %IAIZ(;’ +4n|Al% o,
0

since o < n, @'u* < 2¢ and cﬂ > 1.
0
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For the third term I1I, we compute:
I =9 (V. V(IAP0)) , + ¢ ' 1APIVel* - (VA Vo),
=0 " (Vo.V(1AI’@) ), + 407 (@' 0’| A’ |Vu|* - 49 u| A|(V| A, Vu)
<—o (Vo V(IAIPp) ), + 607 (@ u)|AI*|Vul* + 2| V|A||*o.
From Kato’s inequality, [V|A||? < |[VA|?, so that

[+ 0+ < (@2 +cj0) — 2029 ) |AI* + <6n + 2+ i) Ao+ Zo
Cl Cok C2

+ (607 (@'w)? — (6 + Tk@)g ) |AI*|Vul* — 0~ (Vo V(IAI70) ) ;-
Note that since ¢;6 < cok and @ — u?@’ = —k¢?, we have (2 + ¢,6) — 2u’>¢’ < —k@?*. Moreover,
690~ (@'w)’ = (6 + Tkp)g' = —kp@'.

Now let ¢; = ok and ¢, = Lthen6n+ < + 2 < £20) 4nd on {ertlrsR}ﬁ{lAl2 > 1},wehave
c c c cok k

c(n, cy)
k

I+ 11+ 10 < —k|A|*? + ( k(p'|Vu|2> AP — ¢ (Vo.V(IAI70)),, + 0”0

This proves the lemma.
Now we are ready to show the interior estimates on the second fundamental form | A| (i.e., |V>v]). For simplicity, let
2
g=1Al".

Then the previous lemma says

0 c(n,cpy) _
<& - A)g < kg’ + <TO - k(p’IVuI2>g -0 Vo, Vg)y + 0.

Now let

7 = (cosh R — cosh r)2

13

be the spacial cut-off function, and let #” denote the differentiation with respect to cosh r. Then, from Proposition 3.1, we have

1
coshr

(i - A)(— coshr) = — [

- (1=(vg,2)3) — (n—o(vp,e)p)coshr —o(vp,z)p

<(oc +n)coshr+o.
So that
0 0 2
(E - A)n =2(cosh R — coshr)(E - A)(— coshr) — 2|V coshr|
<2(c + n)cosh® R + 2o cosh R — 2|V cosh r|?

<220 +n) cosh” R — 2|V cosh r|?,

if o < cosh R, namely, R is sufficiently large, e.g., cosh R > n.
Therefore, we compute:

(% —A>(gf1) <

c(n, cg) _
—kg® + <T - k(p’IVu|2>g -9 (Vo,Vg)y +°p|n
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0
+g(5 - A)n —2(Vg,Vn)

c(n, cy) _ "2
s—kg2n+< . 0 )gn—(p Vo, Vign)y + lZ e

|V cosh r|?
nu?
9

i A)n — 217V (gn), Vi) + 21~ g|V|?

+ c%on +g<

c(n, cp) _ _
s—kg2n+< ko >gn—((p Vo +217'Vn. Vign)

+0%gn + g(2(20 + n) cosh® R — 2|V cosh r|?) +g|Vcoshr|2<% + 8>
u

c(n, cp) _ _
S—kg2n+< - 4 )gn—((p Vo +217'Vn. Vign) (4.1)
leé 2 2
+30ng| 1+ & cosh® R+ o ¢n,

where we used Young’s inequality and the facts that 9~! V¢ = 2pu=3Vuand ¢’ = @*u*and ' |Vy|? = 7|5’ |?|V cosh r|? =
4|V cosh r|?> < 4(1 + cosh r)2. Therefore, we have

0 c(n, cp) _ _
<E - A)(gnt) < - kg’nt + (Tot + 1>gn — (@ 'V +217'Vn, V(gnn) ,
+30ng<1 + L}()(cosh2 R)t + o ont. 4.2)
)]

Now at a point (x,7y) where supj 71 SUp, xes, |-<r) (&) # 0 is attained for 7, > 0, we have

c(n,c
kg*nty < < ( . O)to + 1>g11 + 30ng<1 + Lk) ( cosh® R)t, + o> pnt,,

€

which implies (dividing by kg = k| A|*¢ on both sides) at (x, ;) we have

1 ( c(n,cpy) 30 1 2
g(x0.10)n(x0.10) 1 < E( - o+ 1> cosh? R + T"(l + co_k>(COSh2 R)1y + klillz (cosh® R)t,

2
< c(n’co)(l +T)cosh? R + @<1 +T+ L) cosh? R.
k2 k | A2 (xo, 1)

Note that for any (x,?) € {x € %, | coshr < 6 cosh R} X [0, T] we have
g0, Dn(x, 01 < g(xg.10)1(x0.19) 79 and 7 > (1 — 6)° cosh® R.

If | A (xq, 79) < 1, then

1 _
ol AP(x,T) < i 'oe, Ty (x5 19)11(x0, 1)

<4(1-6)2 sup sup u’
1€[0,T] {x€Z,|r<R}

< i(1 - 0)7 sup sup  u®,
€ 1€[0,T] {x€Z,|r<R)}
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where we used ¢, < @ < 2u” and 5 < 2cosh? R. Otherwise, if |A]?(x. 7o) > 1 then we have

)21 Lo

c(n, cy) <1

cO|A|2(x, T)<gxT)< [ 2

+ 1
T
< c n, ¢ ( )(1 —-6)~2 sup sup ut.
1€[0,T] {x€X,|r<R}

Since T > 0 was arbitrary, we have just proved

Theorem 4.2. Forallt € [0,T], any R > cosh_l(n) and any 6 € (0, 1) we have

sup |A]? < c(n, c0)< >(1 —6)7% sup sup  ut.
{x€ZX,| cosh r<@ cosh R} s€[0,t] {xeX;|r<R}

4.2 | Estimates on all the higher order derivatives

The estimates on all the higher order derivatives could be obtained analogously by looking at the evolution equations of the
higher derivatives of the second fundamental form, see e.g. [7] and [19]. For this, we have

Lemma 4.3. For hypersurfaces X, moving by MMCF in W' which can be written locally as radial graphs, we have
(i)

<Q—A)V"’A= Y ViAxVIAxVEA+s Y VIAxVIA+ Y ViAx VR 4o x V'RY.

at i+jtk=m i+j=m i+j=m

where S * T is a tensor formed by contraction of tensors S and T by the metric g on Z, or its inverse;
(ii)
(5~ A )Iv"ar <-219m1ap

+c< D VAV A|VFA|IV Al + 0 ) |ViA||VjA||V'"A|+|V’"A|2+6|V’"A|2>.

i+j+k=m i+j=m

Theorem 4.4. Forallt € [0,T], any R > Cosh_l(n) and any 6 € (0, 1) we have

1 1 m+1
sup IV"A|? < ¢ n, ¢y, sup sup u <1+—>(1—0)_2<1+—> .
{x€Z,| cosh r<6 cosh R} s€[0,1] {x€Z,[r<R)} t t

Proof. Similar to the proof of Theorem 4.2, c.f. [7]. O

S | PROOF OF THEOREM 1.1

Our goal in this section is to prove the main Theorem 1.1.

Proof. We will use the method of continuity. First assume X (or equivalently v,) is smooth. For any £ > 0, define the solid

cylinder
X
C, = {er"“ e 1},
Xpt1 €

andlet X =X, N C, and Q, := Fal (£9 N C,). Then Q, is compact and T, :=F, (0, ) is a smooth radial graph over 0€,.
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From the existence result in [15] for the approximate MMCF we know that the initial-boundary value problem

%F(z, N=(H -0y (z.1€Q x(0,0),
F(z,0) = Fy(z), 1€Q,, G-
F(z,t) =T',(2), (z,1) € 09, X [0, ),
has a unique radial graph solution
FE@) = F(z.1) € C™(Q, X (0, 00)) N C* %3 (@, x (0, 00)) 1 CO(; X [0, ).

and we denote Xf = F¢(Q,,1).
Now, for every € € (0, 1), let v°(z, ?) be the solution to (5.1) (c.f. (1.4)), namely,

ij €
o0Vt (z,1) zajvij
=Yy

= —ye- Vot —oyu®, (z,1) € Q, X(0,0),

°(z,0) = vy(2), z€Q, (5.2)

Ve(z,t) = ¢%(2), (z,1) € 0Q, X [0, ).

For a fixed 6, > 0 sufficiently small, let

E .5 =Zn {x € H™! | r(x) < cosh™ <51—0> } =3 NG,

where r(x) is the hyperbolic distance from x € H"*! to the x,, 41-axis and cosh r(x) = lxlE .Then E, , 5 is a compact radial graph

and we have Eq, 5, = Eq 5, 5, for all € < 6,. By compactness, there exist caps .5, S Wlth constant mean curvature ¢ such that
the Euclidean norms satisfy ¢ 1(2 ) <xlp < |F@)| < Ixlp < c( 0 ) forall x; € S;,i=1,2,anyz € (Fj)~ (Eo’gﬁo),
and any € < §. This implies, by the comparison principle for MMCEF, that for all € < &, we have

sup sup |v(z, 1)| < co| n, by, sup lvg(@)] |-
1€(0,00) 2&(F))~ (E, . 5,,) 2€F; 1 (Eg 6 5)

For 8 € (0, 1), let

Gies0 - = {x €E,; | e("“’)’(cosh r(x) + F> ;}

Note that by Theorem 3.8, for all € < §, and any Ti, > O we have

sup sup [Voe(z,1)| < e(”+2)T0c1 1, 8os Co» sup [Vuy(2)] |-
1€[0,Tp] ze(Ff)_l(GtE 5 1) ZEF(;](E‘W()%)
£00-3

For gy > 0and 6 € (0, 1), let

0
Kt,s,so,e = {X € Et,£,60 | coshr(x) < g_ }

0

-1
o 1 c
prpld 2,andlet T, = ~te )logég and gy = (5(17 - n+—6> . Then, for our

Choose § > 0 sufficiently small such that +/z -
5

choices of 6, Tj), £, we know that for any £ < §,

G

=K .
TO,E,(SO,% To,s,eo,%
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Hence, for all € < §,, we have

sup sup |Vve (z,1)| < " DTo¢ | n, 8, cos sup [Voy(2)] |-
1€[0,Tp] ze(Ff)‘l(Kt“0 1) 2€F 1 (Eg 5 5)
£€0:2

Therefore, by Theorem 4.4, for any integer m > 2 and any € < §,, we have

sup sup V"0 (z,1)| < ¢ (n, 50,c1).
€l0.T) 26 ®)1K, 1)

£0:5

Hence, for such fixed &, > 0, by the Arzela—Ascoli Theorem, there exists some sequence {gi,O}Z , such that €;y > 0 as

i — oo and such that v converges uniformly in C* to some v¢0-70 € C® (QZEO x [0, TO]) as i — oo which solves (5.2). Now

fix a descending sequence {‘Sk}lio such that 6, — 0 as k — oco. Then define T}, = —m log 6, and i = 51% - n%ﬁ Then

T, > oandeg;, = 0ask - .

For nonnegative integers k, suppose we have a function v¢+Tk € Cm(ngk x [0, Tk]) solving (5.2) such that v+« is the
uniform limit of some sequence {Uei-k }Zl and kT @ XI0.T] = verTi for all nonnegative integers I < k. We can see this by
induction. The case of k = 0 was done above. Our interior estimates imply we have uniform bounds of v* and its derivatives on
Q. X [0, T +1] for € < 6,,,. So, again by the Arzela—Ascoli Theorem, there exists a subsequence {UELk+l },oi , of {Uéf»k }z I

i . ,T . .
such that vfik+! convero%’es uniformly to some v€+1 k;l € C® (¥ [0, Tes1]) as i = oo. Since Qy,, X [0,T}] € Q,,, X
. . . ’T _ ,T
[0, Tk+1] and {UEukH }i=1 is a subsequence of {U‘hk }i=1’ we must have pfk+1-"k+1 |QZst[0’Tk] = vk,

If (z,1) € S} X [0, 00), then there exists some nonnegative integer k such that (z,7) € Qzék X [0,T,]. Define v(z,t) =
v Tk(z, t). Then our construction of the sequence v°xTk shows this definition is well-defined. Moreover, if we define F(z, 1) =
e’z on S X [0, c0), then F € C*(S" X [0, 00)) solves (1.4).

Now if X is merely locally Lipschitz continuous, then for any fixed compact subset Q C S”, we can approximate v, by

J
0

s, there is a smooth one parameter family of functions U{ solving (5.2) with initial data v(‘] Now our interior estimates imply

smooth functions v; with the same Lipschitz bound as the Lipschitz bound of v, on Q. By the above arguments, for every

v{ and all its derivatives are uniformly bounded in any compact set K C €, which again implies the existence of a uniform
limit v € C® (K x (0,T]) n CO*10+1/2(K x [0,T1). Since Q and T were arbitrary, this establishes the existence of a function
vEC®(S" x(0,00)) N Co“’O“/Q(Sf’F X [0, 00)) which solves (1.4). O
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